Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Enhance your security with real-time object detection using Ultralytics YOLO11. Reduce false positives and integrate seamlessly with existing systems. | YOLO11, Security Alarm System, real-time object detection, Ultralytics, computer vision, integration, false positives |
The Security Alarm System Project utilizing Ultralytics YOLO11 integrates advanced computer vision capabilities to enhance security measures. YOLO11, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:
Watch: Security Alarm System Project with Ultralytics YOLO11 Object Detection
???+ note
App Password Generation is necessary
password
field in the code below.!!! example "Security Alarm System using YOLO11 Example"
=== "Python"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
# Video writer
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("security_alarm_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
from_email = "abc@gmail.com" # The sender email address
password = "---- ---- ---- ----" # 16-digits password generated via: https://myaccount.google.com/apppasswords
to_email = "xyz@gmail.com" # The receiver email address
# Init SecurityAlarm
security = solutions.SecurityAlarm(
show=True, # Display the output
model="yolo11n.pt", # i.e. YOLO11s.pt
records=1, # Total detections count to send an email about security
)
security.authenticate(from_email, password, to_email) # Authenticate the email server
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = security.monitor(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements.
SecurityAlarm
Here's a table with the SecurityAlarm
arguments:
Name | Type | Default | Description |
---|---|---|---|
model |
str |
None |
Path to Ultralytics YOLO Model File |
line_width |
int |
2 |
Line thickness for bounding boxes. |
show |
bool |
False |
Flag to control whether to display the video stream. |
records |
int |
5 |
Total detections count to send an email about security. |
model.track
{% include "macros/track-args.md" %}
Ultralytics YOLO11 enhances security alarm systems by delivering high-accuracy, real-time object detection. Its advanced algorithms significantly reduce false positives, ensuring that the system only responds to genuine threats. This increased reliability can be seamlessly integrated with existing security infrastructure, upgrading the overall surveillance quality.
Yes, Ultralytics YOLO11 can be seamlessly integrated with your existing security infrastructure. The system supports various modes and provides flexibility for customization, allowing you to enhance your existing setup with advanced object detection capabilities. For detailed instructions on integrating YOLO11 in your projects, visit the integration section.
Running Ultralytics YOLO11 on a standard setup typically requires around 5GB of free disk space. This includes space for storing the YOLO11 model and any additional dependencies. For cloud-based solutions, Ultralytics HUB offers efficient project management and dataset handling, which can optimize storage needs. Learn more about the Pro Plan for enhanced features including extended storage.
Ultralytics YOLO11 provides an edge over models like Faster R-CNN or SSD with its real-time detection capabilities and higher accuracy. Its unique architecture allows it to process images much faster without compromising on precision, making it ideal for time-sensitive applications like security alarm systems. For a comprehensive comparison of object detection models, you can explore our guide.
To reduce false positives, ensure your Ultralytics YOLO11 model is adequately trained with a diverse and well-annotated dataset. Fine-tuning hyperparameters and regularly updating the model with new data can significantly improve detection accuracy. Detailed hyperparameter tuning techniques can be found in our hyperparameter tuning guide.
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?