Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Aprenda cómo perfilar la velocidad y exactitud de YOLOv8 en varios formatos de exportación; obtenga perspectivas sobre las métricas mAP50-95, accuracy_top5 y más. | Ultralytics, YOLOv8, benchmarking, perfilado de velocidad, perfilado de exactitud, mAP50-95, accuracy_top5, ONNX, OpenVINO, TensorRT, formatos de exportación YOLO |
Una vez que su modelo está entrenado y validado, el siguiente paso lógico es evaluar su rendimiento en varios escenarios del mundo real. El modo benchmark en Ultralytics YOLOv8 cumple con este propósito proporcionando un marco sólido para valorar la velocidad y exactitud de su modelo a través de una gama de formatos de exportación.
!!! Tip "Consejo"
* Exporte a ONNX o OpenVINO para acelerar la velocidad de CPU hasta 3 veces.
* Exporte a TensorRT para acelerar la velocidad de GPU hasta 5 veces.
Ejecute benchmarks de YOLOv8n en todos los formatos de exportación soportados incluyendo ONNX, TensorRT, etc. Vea la sección de Argumentos a continuación para una lista completa de argumentos de exportación.
!!! Example "Ejemplo"
=== "Python"
```python
from ultralytics.utils.benchmarks import benchmark
# Benchmark en GPU
benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0)
```
=== "CLI"
```bash
yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0
```
Argumentos como model
, data
, imgsz
, half
, device
, y verbose
proporcionan a los usuarios la flexibilidad de ajustar los benchmarks a sus necesidades específicas y comparar el rendimiento de diferentes formatos de exportación con facilidad.
Clave | Valor | Descripción |
---|---|---|
model |
None |
ruta al archivo del modelo, es decir, yolov8n.pt, yolov8n.yaml |
data |
None |
ruta a YAML que referencia el conjunto de datos de benchmarking (bajo la etiqueta val ) |
imgsz |
640 |
tamaño de imagen como escalar o lista (h, w), es decir, (640, 480) |
half |
False |
cuantificación FP16 |
int8 |
False |
cuantificación INT8 |
device |
None |
dispositivo en el que se ejecutará, es decir, dispositivo cuda=0 o dispositivo=0,1,2,3 o dispositivo=cpu |
verbose |
False |
no continuar en caso de error (bool), o umbral de piso de valor (float) |
Los benchmarks intentarán ejecutarse automáticamente en todos los posibles formatos de exportación a continuación.
Formato | Argumento format |
Modelo | Metadatos | Argumentos |
---|---|---|---|---|
PyTorch | - | yolov8n.pt |
✅ | - |
TorchScript | torchscript |
yolov8n.torchscript |
✅ | imgsz , optimize |
ONNX | onnx |
yolov8n.onnx |
✅ | imgsz , half , dynamic , simplify , opset |
OpenVINO | openvino |
yolov8n_openvino_model/ |
✅ | imgsz , half |
TensorRT | engine |
yolov8n.engine |
✅ | imgsz , half , dynamic , simplify , workspace |
CoreML | coreml |
yolov8n.mlpackage |
✅ | imgsz , half , int8 , nms |
TF SavedModel | saved_model |
yolov8n_saved_model/ |
✅ | imgsz , keras |
TF GraphDef | pb |
yolov8n.pb |
❌ | imgsz |
TF Lite | tflite |
yolov8n.tflite |
✅ | imgsz , half , int8 |
TF Edge TPU | edgetpu |
yolov8n_edgetpu.tflite |
✅ | imgsz |
TF.js | tfjs |
yolov8n_web_model/ |
✅ | imgsz |
PaddlePaddle | paddle |
yolov8n_paddle_model/ |
✅ | imgsz |
ncnn | ncnn |
yolov8n_ncnn_model/ |
✅ | imgsz , half |
Vea los detalles completos de export
en la página Export.
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?