Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Detailed guide on the special COCO-Pose Dataset in Ultralytics. Learn about its key features, structure, and usage in pose estimation tasks with YOLO. | Ultralytics YOLO, COCO-Pose Dataset, Deep Learning, Pose Estimation, Training Models, Dataset YAML, openpose, YOLO |
The COCO-Pose dataset is a specialized version of the COCO (Common Objects in Context) dataset, designed for pose estimation tasks. It leverages the COCO Keypoints 2017 images and labels to enable the training of models like YOLO for pose estimation tasks.
The COCO-Pose dataset is split into three subsets:
The COCO-Pose dataset is specifically used for training and evaluating deep learning models in keypoint detection and pose estimation tasks, such as OpenPose. The dataset's large number of annotated images and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners focused on pose estimation.
A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the COCO-Pose dataset, the coco-pose.yaml
file is maintained at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml.
!!! Example "ultralytics/cfg/datasets/coco-pose.yaml"
```yaml
--8<-- "ultralytics/cfg/datasets/coco-pose.yaml"
```
To train a YOLOv8n-pose model on the COCO-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
!!! Example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-pose.pt') # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='coco-pose.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=coco-pose.yaml model=yolov8n.pt epochs=100 imgsz=640
```
The COCO-Pose dataset contains a diverse set of images with human figures annotated with keypoints. Here are some examples of images from the dataset, along with their corresponding annotations:
The example showcases the variety and complexity of the images in the COCO-Pose dataset and the benefits of using mosaicing during the training process.
If you use the COCO-Pose dataset in your research or development work, please cite the following paper:
!!! Quote ""
=== "BibTeX"
```bibtex
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO-Pose dataset and its creators, visit the COCO dataset website.
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?