1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import math
- import warnings
- from pathlib import Path
- from typing import Any, Callable, Dict, List, Optional, Union
- import cv2
- import numpy as np
- import torch
- from PIL import Image, ImageDraw, ImageFont
- from PIL import __version__ as pil_version
- from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, TryExcept, ops, plt_settings, threaded
- from ultralytics.utils.checks import check_font, check_version, is_ascii
- from ultralytics.utils.files import increment_path
- class Colors:
- """
- Ultralytics color palette for visualization and plotting.
- This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
- RGB values and accessing predefined color schemes for object detection and pose estimation.
- Attributes:
- palette (List[tuple]): List of RGB color tuples for general use.
- n (int): The number of colors in the palette.
- pose_palette (np.ndarray): A specific color palette array for pose estimation with dtype np.uint8.
- Examples:
- >>> from ultralytics.utils.plotting import Colors
- >>> colors = Colors()
- >>> colors(5, True) # Returns BGR format: (221, 111, 255)
- >>> colors(5, False) # Returns RGB format: (255, 111, 221)
- ## Ultralytics Color Palette
- | Index | Color | HEX | RGB |
- |-------|-------------------------------------------------------------------|-----------|-------------------|
- | 0 | <i class="fa-solid fa-square fa-2xl" style="color: #042aff;"></i> | `#042aff` | (4, 42, 255) |
- | 1 | <i class="fa-solid fa-square fa-2xl" style="color: #0bdbeb;"></i> | `#0bdbeb` | (11, 219, 235) |
- | 2 | <i class="fa-solid fa-square fa-2xl" style="color: #f3f3f3;"></i> | `#f3f3f3` | (243, 243, 243) |
- | 3 | <i class="fa-solid fa-square fa-2xl" style="color: #00dfb7;"></i> | `#00dfb7` | (0, 223, 183) |
- | 4 | <i class="fa-solid fa-square fa-2xl" style="color: #111f68;"></i> | `#111f68` | (17, 31, 104) |
- | 5 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6fdd;"></i> | `#ff6fdd` | (255, 111, 221) |
- | 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff444f;"></i> | `#ff444f` | (255, 68, 79) |
- | 7 | <i class="fa-solid fa-square fa-2xl" style="color: #cced00;"></i> | `#cced00` | (204, 237, 0) |
- | 8 | <i class="fa-solid fa-square fa-2xl" style="color: #00f344;"></i> | `#00f344` | (0, 243, 68) |
- | 9 | <i class="fa-solid fa-square fa-2xl" style="color: #bd00ff;"></i> | `#bd00ff` | (189, 0, 255) |
- | 10 | <i class="fa-solid fa-square fa-2xl" style="color: #00b4ff;"></i> | `#00b4ff` | (0, 180, 255) |
- | 11 | <i class="fa-solid fa-square fa-2xl" style="color: #dd00ba;"></i> | `#dd00ba` | (221, 0, 186) |
- | 12 | <i class="fa-solid fa-square fa-2xl" style="color: #00ffff;"></i> | `#00ffff` | (0, 255, 255) |
- | 13 | <i class="fa-solid fa-square fa-2xl" style="color: #26c000;"></i> | `#26c000` | (38, 192, 0) |
- | 14 | <i class="fa-solid fa-square fa-2xl" style="color: #01ffb3;"></i> | `#01ffb3` | (1, 255, 179) |
- | 15 | <i class="fa-solid fa-square fa-2xl" style="color: #7d24ff;"></i> | `#7d24ff` | (125, 36, 255) |
- | 16 | <i class="fa-solid fa-square fa-2xl" style="color: #7b0068;"></i> | `#7b0068` | (123, 0, 104) |
- | 17 | <i class="fa-solid fa-square fa-2xl" style="color: #ff1b6c;"></i> | `#ff1b6c` | (255, 27, 108) |
- | 18 | <i class="fa-solid fa-square fa-2xl" style="color: #fc6d2f;"></i> | `#fc6d2f` | (252, 109, 47) |
- | 19 | <i class="fa-solid fa-square fa-2xl" style="color: #a2ff0b;"></i> | `#a2ff0b` | (162, 255, 11) |
- ## Pose Color Palette
- | Index | Color | HEX | RGB |
- |-------|-------------------------------------------------------------------|-----------|-------------------|
- | 0 | <i class="fa-solid fa-square fa-2xl" style="color: #ff8000;"></i> | `#ff8000` | (255, 128, 0) |
- | 1 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9933;"></i> | `#ff9933` | (255, 153, 51) |
- | 2 | <i class="fa-solid fa-square fa-2xl" style="color: #ffb266;"></i> | `#ffb266` | (255, 178, 102) |
- | 3 | <i class="fa-solid fa-square fa-2xl" style="color: #e6e600;"></i> | `#e6e600` | (230, 230, 0) |
- | 4 | <i class="fa-solid fa-square fa-2xl" style="color: #ff99ff;"></i> | `#ff99ff` | (255, 153, 255) |
- | 5 | <i class="fa-solid fa-square fa-2xl" style="color: #99ccff;"></i> | `#99ccff` | (153, 204, 255) |
- | 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff66ff;"></i> | `#ff66ff` | (255, 102, 255) |
- | 7 | <i class="fa-solid fa-square fa-2xl" style="color: #ff33ff;"></i> | `#ff33ff` | (255, 51, 255) |
- | 8 | <i class="fa-solid fa-square fa-2xl" style="color: #66b2ff;"></i> | `#66b2ff` | (102, 178, 255) |
- | 9 | <i class="fa-solid fa-square fa-2xl" style="color: #3399ff;"></i> | `#3399ff` | (51, 153, 255) |
- | 10 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9999;"></i> | `#ff9999` | (255, 153, 153) |
- | 11 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6666;"></i> | `#ff6666` | (255, 102, 102) |
- | 12 | <i class="fa-solid fa-square fa-2xl" style="color: #ff3333;"></i> | `#ff3333` | (255, 51, 51) |
- | 13 | <i class="fa-solid fa-square fa-2xl" style="color: #99ff99;"></i> | `#99ff99` | (153, 255, 153) |
- | 14 | <i class="fa-solid fa-square fa-2xl" style="color: #66ff66;"></i> | `#66ff66` | (102, 255, 102) |
- | 15 | <i class="fa-solid fa-square fa-2xl" style="color: #33ff33;"></i> | `#33ff33` | (51, 255, 51) |
- | 16 | <i class="fa-solid fa-square fa-2xl" style="color: #00ff00;"></i> | `#00ff00` | (0, 255, 0) |
- | 17 | <i class="fa-solid fa-square fa-2xl" style="color: #0000ff;"></i> | `#0000ff` | (0, 0, 255) |
- | 18 | <i class="fa-solid fa-square fa-2xl" style="color: #ff0000;"></i> | `#ff0000` | (255, 0, 0) |
- | 19 | <i class="fa-solid fa-square fa-2xl" style="color: #ffffff;"></i> | `#ffffff` | (255, 255, 255) |
- !!! note "Ultralytics Brand Colors"
- For Ultralytics brand colors see [https://www.ultralytics.com/brand](https://www.ultralytics.com/brand).
- Please use the official Ultralytics colors for all marketing materials.
- """
- def __init__(self):
- """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
- hexs = (
- "042AFF",
- "0BDBEB",
- "F3F3F3",
- "00DFB7",
- "111F68",
- "FF6FDD",
- "FF444F",
- "CCED00",
- "00F344",
- "BD00FF",
- "00B4FF",
- "DD00BA",
- "00FFFF",
- "26C000",
- "01FFB3",
- "7D24FF",
- "7B0068",
- "FF1B6C",
- "FC6D2F",
- "A2FF0B",
- )
- self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
- self.n = len(self.palette)
- self.pose_palette = np.array(
- [
- [255, 128, 0],
- [255, 153, 51],
- [255, 178, 102],
- [230, 230, 0],
- [255, 153, 255],
- [153, 204, 255],
- [255, 102, 255],
- [255, 51, 255],
- [102, 178, 255],
- [51, 153, 255],
- [255, 153, 153],
- [255, 102, 102],
- [255, 51, 51],
- [153, 255, 153],
- [102, 255, 102],
- [51, 255, 51],
- [0, 255, 0],
- [0, 0, 255],
- [255, 0, 0],
- [255, 255, 255],
- ],
- dtype=np.uint8,
- )
- def __call__(self, i: int, bgr: bool = False) -> tuple:
- """
- Convert hex color codes to RGB values.
- Args:
- i (int): Color index.
- bgr (bool, optional): Whether to return BGR format instead of RGB.
- Returns:
- (tuple): RGB or BGR color tuple.
- """
- c = self.palette[int(i) % self.n]
- return (c[2], c[1], c[0]) if bgr else c
- @staticmethod
- def hex2rgb(h: str) -> tuple:
- """Convert hex color codes to RGB values (i.e. default PIL order)."""
- return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
- colors = Colors() # create instance for 'from utils.plots import colors'
- class Annotator:
- """
- Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.
- Attributes:
- im (Image.Image | np.ndarray): The image to annotate.
- pil (bool): Whether to use PIL or cv2 for drawing annotations.
- font (ImageFont.truetype | ImageFont.load_default): Font used for text annotations.
- lw (float): Line width for drawing.
- skeleton (List[List[int]]): Skeleton structure for keypoints.
- limb_color (List[int]): Color palette for limbs.
- kpt_color (List[int]): Color palette for keypoints.
- dark_colors (set): Set of colors considered dark for text contrast.
- light_colors (set): Set of colors considered light for text contrast.
- Examples:
- >>> from ultralytics.utils.plotting import Annotator
- >>> im0 = cv2.imread("test.png")
- >>> annotator = Annotator(im0, line_width=10)
- >>> annotator.box_label([10, 10, 100, 100], "person", (255, 0, 0))
- """
- def __init__(
- self,
- im,
- line_width: Optional[int] = None,
- font_size: Optional[int] = None,
- font: str = "Arial.ttf",
- pil: bool = False,
- example: str = "abc",
- ):
- """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
- non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
- input_is_pil = isinstance(im, Image.Image)
- self.pil = pil or non_ascii or input_is_pil
- self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
- if not input_is_pil:
- if im.shape[2] == 1: # handle grayscale
- im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
- elif im.shape[2] > 3: # multispectral
- im = np.ascontiguousarray(im[..., :3])
- if self.pil: # use PIL
- self.im = im if input_is_pil else Image.fromarray(im)
- if self.im.mode not in {"RGB", "RGBA"}: # multispectral
- self.im = self.im.convert("RGB")
- self.draw = ImageDraw.Draw(self.im, "RGBA")
- try:
- font = check_font("Arial.Unicode.ttf" if non_ascii else font)
- size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
- self.font = ImageFont.truetype(str(font), size)
- except Exception:
- self.font = ImageFont.load_default()
- # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
- if check_version(pil_version, "9.2.0"):
- self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height
- else: # use cv2
- assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
- self.im = im if im.flags.writeable else im.copy()
- self.tf = max(self.lw - 1, 1) # font thickness
- self.sf = self.lw / 3 # font scale
- # Pose
- self.skeleton = [
- [16, 14],
- [14, 12],
- [17, 15],
- [15, 13],
- [12, 13],
- [6, 12],
- [7, 13],
- [6, 7],
- [6, 8],
- [7, 9],
- [8, 10],
- [9, 11],
- [2, 3],
- [1, 2],
- [1, 3],
- [2, 4],
- [3, 5],
- [4, 6],
- [5, 7],
- ]
- self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
- self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
- self.dark_colors = {
- (235, 219, 11),
- (243, 243, 243),
- (183, 223, 0),
- (221, 111, 255),
- (0, 237, 204),
- (68, 243, 0),
- (255, 255, 0),
- (179, 255, 1),
- (11, 255, 162),
- }
- self.light_colors = {
- (255, 42, 4),
- (79, 68, 255),
- (255, 0, 189),
- (255, 180, 0),
- (186, 0, 221),
- (0, 192, 38),
- (255, 36, 125),
- (104, 0, 123),
- (108, 27, 255),
- (47, 109, 252),
- (104, 31, 17),
- }
- def get_txt_color(self, color: tuple = (128, 128, 128), txt_color: tuple = (255, 255, 255)) -> tuple:
- """
- Assign text color based on background color.
- Args:
- color (tuple, optional): The background color of the rectangle for text (B, G, R).
- txt_color (tuple, optional): The color of the text (R, G, B).
- Returns:
- (tuple): Text color for label.
- Examples:
- >>> from ultralytics.utils.plotting import Annotator
- >>> im0 = cv2.imread("test.png")
- >>> annotator = Annotator(im0, line_width=10)
- >>> annotator.get_txt_color(color=(104, 31, 17)) # return (255, 255, 255)
- """
- if color in self.dark_colors:
- return 104, 31, 17
- elif color in self.light_colors:
- return 255, 255, 255
- else:
- return txt_color
- def box_label(self, box, label: str = "", color: tuple = (128, 128, 128), txt_color: tuple = (255, 255, 255)):
- """
- Draw a bounding box on an image with a given label.
- Args:
- box (tuple): The bounding box coordinates (x1, y1, x2, y2).
- label (str, optional): The text label to be displayed.
- color (tuple, optional): The background color of the rectangle (B, G, R).
- txt_color (tuple, optional): The color of the text (R, G, B).
- Examples:
- >>> from ultralytics.utils.plotting import Annotator
- >>> im0 = cv2.imread("test.png")
- >>> annotator = Annotator(im0, line_width=10)
- >>> annotator.box_label(box=[10, 20, 30, 40], label="person")
- """
- txt_color = self.get_txt_color(color, txt_color)
- if isinstance(box, torch.Tensor):
- box = box.tolist()
- multi_points = isinstance(box[0], list) # multiple points with shape (n, 2)
- p1 = [int(b) for b in box[0]] if multi_points else (int(box[0]), int(box[1]))
- if self.pil:
- self.draw.polygon(
- [tuple(b) for b in box], width=self.lw, outline=color
- ) if multi_points else self.draw.rectangle(box, width=self.lw, outline=color)
- if label:
- w, h = self.font.getsize(label) # text width, height
- outside = p1[1] >= h # label fits outside box
- if p1[0] > self.im.size[0] - w: # size is (w, h), check if label extend beyond right side of image
- p1 = self.im.size[0] - w, p1[1]
- self.draw.rectangle(
- (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
- fill=color,
- )
- # self.draw.text([box[0], box[1]], label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
- self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
- else: # cv2
- cv2.polylines(
- self.im, [np.asarray(box, dtype=int)], True, color, self.lw
- ) if multi_points else cv2.rectangle(
- self.im, p1, (int(box[2]), int(box[3])), color, thickness=self.lw, lineType=cv2.LINE_AA
- )
- if label:
- w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0] # text width, height
- h += 3 # add pixels to pad text
- outside = p1[1] >= h # label fits outside box
- if p1[0] > self.im.shape[1] - w: # shape is (h, w), check if label extend beyond right side of image
- p1 = self.im.shape[1] - w, p1[1]
- p2 = p1[0] + w, p1[1] - h if outside else p1[1] + h
- cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
- cv2.putText(
- self.im,
- label,
- (p1[0], p1[1] - 2 if outside else p1[1] + h - 1),
- 0,
- self.sf,
- txt_color,
- thickness=self.tf,
- lineType=cv2.LINE_AA,
- )
- def masks(self, masks, colors, im_gpu, alpha: float = 0.5, retina_masks: bool = False):
- """
- Plot masks on image.
- Args:
- masks (torch.Tensor): Predicted masks on cuda, shape: [n, h, w]
- colors (List[List[int]]): Colors for predicted masks, [[r, g, b] * n]
- im_gpu (torch.Tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
- alpha (float, optional): Mask transparency: 0.0 fully transparent, 1.0 opaque.
- retina_masks (bool, optional): Whether to use high resolution masks or not.
- """
- if self.pil:
- # Convert to numpy first
- self.im = np.asarray(self.im).copy()
- if len(masks) == 0:
- self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
- if im_gpu.device != masks.device:
- im_gpu = im_gpu.to(masks.device)
- colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3)
- colors = colors[:, None, None] # shape(n,1,1,3)
- masks = masks.unsqueeze(3) # shape(n,h,w,1)
- masks_color = masks * (colors * alpha) # shape(n,h,w,3)
- inv_alpha_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
- mcs = masks_color.max(dim=0).values # shape(n,h,w,3)
- im_gpu = im_gpu.flip(dims=[0]) # flip channel
- im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
- im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
- im_mask = im_gpu * 255
- im_mask_np = im_mask.byte().cpu().numpy()
- self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
- if self.pil:
- # Convert im back to PIL and update draw
- self.fromarray(self.im)
- def kpts(
- self,
- kpts,
- shape: tuple = (640, 640),
- radius: Optional[int] = None,
- kpt_line: bool = True,
- conf_thres: float = 0.25,
- kpt_color: Optional[tuple] = None,
- ):
- """
- Plot keypoints on the image.
- Args:
- kpts (torch.Tensor): Keypoints, shape [17, 3] (x, y, confidence).
- shape (tuple, optional): Image shape (h, w).
- radius (int, optional): Keypoint radius.
- kpt_line (bool, optional): Draw lines between keypoints.
- conf_thres (float, optional): Confidence threshold.
- kpt_color (tuple, optional): Keypoint color (B, G, R).
- Note:
- - `kpt_line=True` currently only supports human pose plotting.
- - Modifies self.im in-place.
- - If self.pil is True, converts image to numpy array and back to PIL.
- """
- radius = radius if radius is not None else self.lw
- if self.pil:
- # Convert to numpy first
- self.im = np.asarray(self.im).copy()
- nkpt, ndim = kpts.shape
- is_pose = nkpt == 17 and ndim in {2, 3}
- kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting
- for i, k in enumerate(kpts):
- color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i))
- x_coord, y_coord = k[0], k[1]
- if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
- if len(k) == 3:
- conf = k[2]
- if conf < conf_thres:
- continue
- cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
- if kpt_line:
- ndim = kpts.shape[-1]
- for i, sk in enumerate(self.skeleton):
- pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
- pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
- if ndim == 3:
- conf1 = kpts[(sk[0] - 1), 2]
- conf2 = kpts[(sk[1] - 1), 2]
- if conf1 < conf_thres or conf2 < conf_thres:
- continue
- if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
- continue
- if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
- continue
- cv2.line(
- self.im,
- pos1,
- pos2,
- kpt_color or self.limb_color[i].tolist(),
- thickness=int(np.ceil(self.lw / 2)),
- lineType=cv2.LINE_AA,
- )
- if self.pil:
- # Convert im back to PIL and update draw
- self.fromarray(self.im)
- def rectangle(self, xy, fill=None, outline=None, width: int = 1):
- """Add rectangle to image (PIL-only)."""
- self.draw.rectangle(xy, fill, outline, width)
- def text(self, xy, text: str, txt_color: tuple = (255, 255, 255), anchor: str = "top", box_color: tuple = ()):
- """
- Add text to an image using PIL or cv2.
- Args:
- xy (List[int]): Top-left coordinates for text placement.
- text (str): Text to be drawn.
- txt_color (tuple, optional): Text color (R, G, B).
- anchor (str, optional): Text anchor position ('top' or 'bottom').
- box_color (tuple, optional): Box color (R, G, B, A) with optional alpha.
- """
- if self.pil:
- w, h = self.font.getsize(text)
- if anchor == "bottom": # start y from font bottom
- xy[1] += 1 - h
- for line in text.split("\n"):
- if box_color:
- # Draw rectangle for each line
- w, h = self.font.getsize(line)
- self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=box_color)
- self.draw.text(xy, line, fill=txt_color, font=self.font)
- xy[1] += h
- else:
- if box_color:
- w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
- h += 3 # add pixels to pad text
- outside = xy[1] >= h # label fits outside box
- p2 = xy[0] + w, xy[1] - h if outside else xy[1] + h
- cv2.rectangle(self.im, xy, p2, box_color, -1, cv2.LINE_AA) # filled
- cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)
- def fromarray(self, im):
- """Update self.im from a numpy array."""
- self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
- self.draw = ImageDraw.Draw(self.im)
- def result(self):
- """Return annotated image as array."""
- return np.asarray(self.im)
- def show(self, title: Optional[str] = None):
- """Show the annotated image."""
- im = Image.fromarray(np.asarray(self.im)[..., ::-1]) # Convert numpy array to PIL Image with RGB to BGR
- if IS_COLAB or IS_KAGGLE: # can not use IS_JUPYTER as will run for all ipython environments
- try:
- display(im) # noqa - display() function only available in ipython environments
- except ImportError as e:
- LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}")
- else:
- im.show(title=title)
- def save(self, filename: str = "image.jpg"):
- """Save the annotated image to 'filename'."""
- cv2.imwrite(filename, np.asarray(self.im))
- @staticmethod
- def get_bbox_dimension(bbox: Optional[tuple] = None):
- """
- Calculate the dimensions and area of a bounding box.
- Args:
- bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).
- Returns:
- width (float): Width of the bounding box.
- height (float): Height of the bounding box.
- area (float): Area enclosed by the bounding box.
- Examples:
- >>> from ultralytics.utils.plotting import Annotator
- >>> im0 = cv2.imread("test.png")
- >>> annotator = Annotator(im0, line_width=10)
- >>> annotator.get_bbox_dimension(bbox=[10, 20, 30, 40])
- """
- x_min, y_min, x_max, y_max = bbox
- width = x_max - x_min
- height = y_max - y_min
- return width, height, width * height
- @TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
- @plt_settings()
- def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
- """
- Plot training labels including class histograms and box statistics.
- Args:
- boxes (np.ndarray): Bounding box coordinates in format [x, y, width, height].
- cls (np.ndarray): Class indices.
- names (dict, optional): Dictionary mapping class indices to class names.
- save_dir (Path, optional): Directory to save the plot.
- on_plot (Callable, optional): Function to call after plot is saved.
- """
- import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
- import pandas
- from matplotlib.colors import LinearSegmentedColormap
- # Filter matplotlib>=3.7.2 warning
- warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
- warnings.filterwarnings("ignore", category=FutureWarning)
- # Plot dataset labels
- LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
- nc = int(cls.max() + 1) # number of classes
- boxes = boxes[:1000000] # limit to 1M boxes
- x = pandas.DataFrame(boxes, columns=["x", "y", "width", "height"])
- try: # Seaborn correlogram
- import seaborn
- seaborn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
- plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
- plt.close()
- except ImportError:
- pass # Skip if seaborn is not installed
- # Matplotlib labels
- subplot_3_4_color = LinearSegmentedColormap.from_list("white_blue", ["white", "blue"])
- ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
- y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
- for i in range(nc):
- y[2].patches[i].set_color([x / 255 for x in colors(i)])
- ax[0].set_ylabel("instances")
- if 0 < len(names) < 30:
- ax[0].set_xticks(range(len(names)))
- ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
- else:
- ax[0].set_xlabel("classes")
- boxes = np.column_stack([0.5 - boxes[:, 2:4] / 2, 0.5 + boxes[:, 2:4] / 2]) * 1000
- img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
- for cls, box in zip(cls[:500], boxes[:500]):
- ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
- ax[1].imshow(img)
- ax[1].axis("off")
- ax[2].hist2d(x["x"], x["y"], bins=50, cmap=subplot_3_4_color)
- ax[2].set_xlabel("x")
- ax[2].set_ylabel("y")
- ax[3].hist2d(x["width"], x["height"], bins=50, cmap=subplot_3_4_color)
- ax[3].set_xlabel("width")
- ax[3].set_ylabel("height")
- for a in [0, 1, 2, 3]:
- for s in ["top", "right", "left", "bottom"]:
- ax[a].spines[s].set_visible(False)
- fname = save_dir / "labels.jpg"
- plt.savefig(fname, dpi=200)
- plt.close()
- if on_plot:
- on_plot(fname)
- def save_one_box(
- xyxy,
- im,
- file: Path = Path("im.jpg"),
- gain: float = 1.02,
- pad: int = 10,
- square: bool = False,
- BGR: bool = False,
- save: bool = True,
- ):
- """
- Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.
- This function takes a bounding box and an image, and then saves a cropped portion of the image according
- to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
- adjustments to the bounding box.
- Args:
- xyxy (torch.Tensor | list): A tensor or list representing the bounding box in xyxy format.
- im (np.ndarray): The input image.
- file (Path, optional): The path where the cropped image will be saved.
- gain (float, optional): A multiplicative factor to increase the size of the bounding box.
- pad (int, optional): The number of pixels to add to the width and height of the bounding box.
- square (bool, optional): If True, the bounding box will be transformed into a square.
- BGR (bool, optional): If True, the image will be returned in BGR format, otherwise in RGB.
- save (bool, optional): If True, the cropped image will be saved to disk.
- Returns:
- (np.ndarray): The cropped image.
- Examples:
- >>> from ultralytics.utils.plotting import save_one_box
- >>> xyxy = [50, 50, 150, 150]
- >>> im = cv2.imread("image.jpg")
- >>> cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True)
- """
- if not isinstance(xyxy, torch.Tensor): # may be list
- xyxy = torch.stack(xyxy)
- b = ops.xyxy2xywh(xyxy.view(-1, 4)) # boxes
- if square:
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
- b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
- xyxy = ops.xywh2xyxy(b).long()
- xyxy = ops.clip_boxes(xyxy, im.shape)
- grayscale = im.shape[2] == 1 # grayscale image
- crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR or grayscale else -1)]
- if save:
- file.parent.mkdir(parents=True, exist_ok=True) # make directory
- f = str(increment_path(file).with_suffix(".jpg"))
- # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
- crop = crop.squeeze(-1) if grayscale else crop[..., ::-1] if BGR else crop
- Image.fromarray(crop).save(f, quality=95, subsampling=0) # save RGB
- return crop
- @threaded
- def plot_images(
- labels: Dict[str, Any],
- images: Union[torch.Tensor, np.ndarray] = np.zeros((0, 3, 640, 640), dtype=np.float32),
- paths: Optional[List[str]] = None,
- fname: str = "images.jpg",
- names: Optional[Dict[int, str]] = None,
- on_plot: Optional[Callable] = None,
- max_size: int = 1920,
- max_subplots: int = 16,
- save: bool = True,
- conf_thres: float = 0.25,
- ) -> Optional[np.ndarray]:
- """
- Plot image grid with labels, bounding boxes, masks, and keypoints.
- Args:
- labels (Dict[str, Any]): Dictionary containing detection data with keys like 'cls', 'bboxes', 'conf', 'masks', 'keypoints', 'batch_idx', 'img'.
- images (Union[torch.Tensor, np.ndarray]): Batch of images to plot. Shape: (batch_size, channels, height, width).
- paths (Optional[List[str]]): List of file paths for each image in the batch.
- fname (str): Output filename for the plotted image grid.
- names (Optional[Dict[int, str]]): Dictionary mapping class indices to class names.
- on_plot (Optional[Callable]): Optional callback function to be called after saving the plot.
- max_size (int): Maximum size of the output image grid.
- max_subplots (int): Maximum number of subplots in the image grid.
- save (bool): Whether to save the plotted image grid to a file.
- conf_thres (float): Confidence threshold for displaying detections.
- Returns:
- (np.ndarray): Plotted image grid as a numpy array if save is False, None otherwise.
- Note:
- This function supports both tensor and numpy array inputs. It will automatically
- convert tensor inputs to numpy arrays for processing.
- """
- for k in {"cls", "bboxes", "conf", "masks", "keypoints", "batch_idx", "images"}:
- if k not in labels:
- continue
- if k == "cls" and labels[k].ndim == 2:
- labels[k] = labels[k].squeeze(1) # squeeze if shape is (n, 1)
- if isinstance(labels[k], torch.Tensor):
- labels[k] = labels[k].cpu().numpy()
- cls = labels.get("cls", np.zeros(0, dtype=np.int64))
- batch_idx = labels.get("batch_idx", np.zeros(cls.shape, dtype=np.int64))
- bboxes = labels.get("bboxes", np.zeros(0, dtype=np.float32))
- confs = labels.get("conf", None)
- masks = labels.get("masks", np.zeros(0, dtype=np.uint8))
- kpts = labels.get("keypoints", np.zeros(0, dtype=np.float32))
- images = labels.get("img", images) # default to input images
- if len(images) and isinstance(images, torch.Tensor):
- images = images.cpu().float().numpy()
- if images.shape[1] > 3:
- images = images[:, :3] # crop multispectral images to first 3 channels
- bs, _, h, w = images.shape # batch size, _, height, width
- bs = min(bs, max_subplots) # limit plot images
- ns = np.ceil(bs**0.5) # number of subplots (square)
- if np.max(images[0]) <= 1:
- images *= 255 # de-normalise (optional)
- # Build Image
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
- for i in range(bs):
- x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
- mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)
- # Resize (optional)
- scale = max_size / ns / max(h, w)
- if scale < 1:
- h = math.ceil(scale * h)
- w = math.ceil(scale * w)
- mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
- # Annotate
- fs = int((h + w) * ns * 0.01) # font size
- fs = max(fs, 18) # ensure that the font size is large enough to be easily readable.
- annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=str(names))
- for i in range(bs):
- x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
- annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
- if paths:
- annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
- if len(cls) > 0:
- idx = batch_idx == i
- classes = cls[idx].astype("int")
- labels = confs is None
- if len(bboxes):
- boxes = bboxes[idx]
- conf = confs[idx] if confs is not None else None # check for confidence presence (label vs pred)
- if len(boxes):
- if boxes[:, :4].max() <= 1.1: # if normalized with tolerance 0.1
- boxes[..., [0, 2]] *= w # scale to pixels
- boxes[..., [1, 3]] *= h
- elif scale < 1: # absolute coords need scale if image scales
- boxes[..., :4] *= scale
- boxes[..., 0] += x
- boxes[..., 1] += y
- is_obb = boxes.shape[-1] == 5 # xywhr
- # TODO: this transformation might be unnecessary
- boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
- for j, box in enumerate(boxes.astype(np.int64).tolist()):
- c = classes[j]
- color = colors(c)
- c = names.get(c, c) if names else c
- if labels or conf[j] > conf_thres:
- label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
- annotator.box_label(box, label, color=color)
- elif len(classes):
- for c in classes:
- color = colors(c)
- c = names.get(c, c) if names else c
- annotator.text([x, y], f"{c}", txt_color=color, box_color=(64, 64, 64, 128))
- # Plot keypoints
- if len(kpts):
- kpts_ = kpts[idx].copy()
- if len(kpts_):
- if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01
- kpts_[..., 0] *= w # scale to pixels
- kpts_[..., 1] *= h
- elif scale < 1: # absolute coords need scale if image scales
- kpts_ *= scale
- kpts_[..., 0] += x
- kpts_[..., 1] += y
- for j in range(len(kpts_)):
- if labels or conf[j] > conf_thres:
- annotator.kpts(kpts_[j], conf_thres=conf_thres)
- # Plot masks
- if len(masks):
- if idx.shape[0] == masks.shape[0]: # overlap_masks=False
- image_masks = masks[idx]
- else: # overlap_masks=True
- image_masks = masks[[i]] # (1, 640, 640)
- nl = idx.sum()
- index = np.arange(nl).reshape((nl, 1, 1)) + 1
- image_masks = np.repeat(image_masks, nl, axis=0)
- image_masks = np.where(image_masks == index, 1.0, 0.0)
- im = np.asarray(annotator.im).copy()
- for j in range(len(image_masks)):
- if labels or conf[j] > conf_thres:
- color = colors(classes[j])
- mh, mw = image_masks[j].shape
- if mh != h or mw != w:
- mask = image_masks[j].astype(np.uint8)
- mask = cv2.resize(mask, (w, h))
- mask = mask.astype(bool)
- else:
- mask = image_masks[j].astype(bool)
- try:
- im[y : y + h, x : x + w, :][mask] = (
- im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
- )
- except Exception:
- pass
- annotator.fromarray(im)
- if not save:
- return np.asarray(annotator.im)
- annotator.im.save(fname) # save
- if on_plot:
- on_plot(fname)
- @plt_settings()
- def plot_results(
- file: str = "path/to/results.csv",
- dir: str = "",
- segment: bool = False,
- pose: bool = False,
- classify: bool = False,
- on_plot: Optional[Callable] = None,
- ):
- """
- Plot training results from a results CSV file. The function supports various types of data including segmentation,
- pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.
- Args:
- file (str, optional): Path to the CSV file containing the training results.
- dir (str, optional): Directory where the CSV file is located if 'file' is not provided.
- segment (bool, optional): Flag to indicate if the data is for segmentation.
- pose (bool, optional): Flag to indicate if the data is for pose estimation.
- classify (bool, optional): Flag to indicate if the data is for classification.
- on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
- Examples:
- >>> from ultralytics.utils.plotting import plot_results
- >>> plot_results("path/to/results.csv", segment=True)
- """
- import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
- import pandas as pd
- from scipy.ndimage import gaussian_filter1d
- save_dir = Path(file).parent if file else Path(dir)
- if classify:
- fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
- index = [2, 5, 3, 4]
- elif segment:
- fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
- index = [2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 8, 9, 12, 13]
- elif pose:
- fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
- index = [2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 9, 10, 13, 14]
- else:
- fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
- index = [2, 3, 4, 5, 6, 9, 10, 11, 7, 8]
- ax = ax.ravel()
- files = list(save_dir.glob("results*.csv"))
- assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
- for f in files:
- try:
- data = pd.read_csv(f)
- s = [x.strip() for x in data.columns]
- x = data.values[:, 0]
- for i, j in enumerate(index):
- y = data.values[:, j].astype("float")
- # y[y == 0] = np.nan # don't show zero values
- ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
- ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
- ax[i].set_title(s[j], fontsize=12)
- # if j in {8, 9, 10}: # share train and val loss y axes
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
- except Exception as e:
- LOGGER.error(f"Plotting error for {f}: {e}")
- ax[1].legend()
- fname = save_dir / "results.png"
- fig.savefig(fname, dpi=200)
- plt.close()
- if on_plot:
- on_plot(fname)
- def plt_color_scatter(v, f, bins: int = 20, cmap: str = "viridis", alpha: float = 0.8, edgecolors: str = "none"):
- """
- Plot a scatter plot with points colored based on a 2D histogram.
- Args:
- v (array-like): Values for the x-axis.
- f (array-like): Values for the y-axis.
- bins (int, optional): Number of bins for the histogram.
- cmap (str, optional): Colormap for the scatter plot.
- alpha (float, optional): Alpha for the scatter plot.
- edgecolors (str, optional): Edge colors for the scatter plot.
- Examples:
- >>> v = np.random.rand(100)
- >>> f = np.random.rand(100)
- >>> plt_color_scatter(v, f)
- """
- import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
- # Calculate 2D histogram and corresponding colors
- hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
- colors = [
- hist[
- min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
- min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
- ]
- for i in range(len(v))
- ]
- # Scatter plot
- plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)
- def plot_tune_results(csv_file: str = "tune_results.csv"):
- """
- Plot the evolution results stored in a 'tune_results.csv' file. The function generates a scatter plot for each key
- in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.
- Args:
- csv_file (str, optional): Path to the CSV file containing the tuning results.
- Examples:
- >>> plot_tune_results("path/to/tune_results.csv")
- """
- import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
- import pandas as pd
- from scipy.ndimage import gaussian_filter1d
- def _save_one_file(file):
- """Save one matplotlib plot to 'file'."""
- plt.savefig(file, dpi=200)
- plt.close()
- LOGGER.info(f"Saved {file}")
- # Scatter plots for each hyperparameter
- csv_file = Path(csv_file)
- data = pd.read_csv(csv_file)
- num_metrics_columns = 1
- keys = [x.strip() for x in data.columns][num_metrics_columns:]
- x = data.values
- fitness = x[:, 0] # fitness
- j = np.argmax(fitness) # max fitness index
- n = math.ceil(len(keys) ** 0.5) # columns and rows in plot
- plt.figure(figsize=(10, 10), tight_layout=True)
- for i, k in enumerate(keys):
- v = x[:, i + num_metrics_columns]
- mu = v[j] # best single result
- plt.subplot(n, n, i + 1)
- plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
- plt.plot(mu, fitness.max(), "k+", markersize=15)
- plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters
- plt.tick_params(axis="both", labelsize=8) # Set axis label size to 8
- if i % n != 0:
- plt.yticks([])
- _save_one_file(csv_file.with_name("tune_scatter_plots.png"))
- # Fitness vs iteration
- x = range(1, len(fitness) + 1)
- plt.figure(figsize=(10, 6), tight_layout=True)
- plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
- plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2) # smoothing line
- plt.title("Fitness vs Iteration")
- plt.xlabel("Iteration")
- plt.ylabel("Fitness")
- plt.grid(True)
- plt.legend()
- _save_one_file(csv_file.with_name("tune_fitness.png"))
- def feature_visualization(x, module_type: str, stage: int, n: int = 32, save_dir: Path = Path("runs/detect/exp")):
- """
- Visualize feature maps of a given model module during inference.
- Args:
- x (torch.Tensor): Features to be visualized.
- module_type (str): Module type.
- stage (int): Module stage within the model.
- n (int, optional): Maximum number of feature maps to plot.
- save_dir (Path, optional): Directory to save results.
- """
- import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
- for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}: # all model heads
- if m in module_type:
- return
- if isinstance(x, torch.Tensor):
- _, channels, height, width = x.shape # batch, channels, height, width
- if height > 1 and width > 1:
- f = save_dir / f"stage{stage}_{module_type.rsplit('.', 1)[-1]}_features.png" # filename
- blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
- n = min(n, channels) # number of plots
- _, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
- ax = ax.ravel()
- plt.subplots_adjust(wspace=0.05, hspace=0.05)
- for i in range(n):
- ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
- ax[i].axis("off")
- LOGGER.info(f"Saving {f}... ({n}/{channels})")
- plt.savefig(f, dpi=300, bbox_inches="tight")
- plt.close()
- np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
|