Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Explore the COCO-Pose dataset for advanced pose estimation. Learn about datasets, pretrained models, metrics, and applications for training with YOLO. | COCO-Pose, pose estimation, dataset, keypoints, COCO Keypoints 2017, YOLO, deep learning, computer vision |
The COCO-Pose dataset is a specialized version of the COCO (Common Objects in Context) dataset, designed for pose estimation tasks. It leverages the COCO Keypoints 2017 images and labels to enable the training of models like YOLO for pose estimation tasks.
{% include "macros/yolo-pose-perf.md" %}
The COCO-Pose dataset is split into three subsets:
The COCO-Pose dataset is specifically used for training and evaluating deep learning models in keypoint detection and pose estimation tasks, such as OpenPose. The dataset's large number of annotated images and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners focused on pose estimation.
A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the COCO-Pose dataset, the coco-pose.yaml
file is maintained at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml.
!!! example "ultralytics/cfg/datasets/coco-pose.yaml"
```yaml
--8<-- "ultralytics/cfg/datasets/coco-pose.yaml"
```
To train a YOLO11n-pose model on the COCO-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
!!! example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n-pose.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="coco-pose.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo pose train data=coco-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640
```
The COCO-Pose dataset contains a diverse set of images with human figures annotated with keypoints. Here are some examples of images from the dataset, along with their corresponding annotations:
The example showcases the variety and complexity of the images in the COCO-Pose dataset and the benefits of using mosaicing during the training process.
If you use the COCO-Pose dataset in your research or development work, please cite the following paper:
!!! quote ""
=== "BibTeX"
```bibtex
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO-Pose dataset and its creators, visit the COCO dataset website.
The COCO-Pose dataset is a specialized version of the COCO (Common Objects in Context) dataset designed for pose estimation tasks. It builds upon the COCO Keypoints 2017 images and annotations, allowing for the training of models like Ultralytics YOLO for detailed pose estimation. For instance, you can use the COCO-Pose dataset to train a YOLO11n-pose model by loading a pretrained model and training it with a YAML configuration. For training examples, refer to the Training documentation.
Training a YOLO11 model on the COCO-Pose dataset can be accomplished using either Python or CLI commands. For example, to train a YOLO11n-pose model for 100 epochs with an image size of 640, you can follow the steps below:
!!! example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n-pose.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="coco-pose.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo pose train data=coco-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640
```
For more details on the training process and available arguments, check the training page.
The COCO-Pose dataset provides several standardized evaluation metrics for pose estimation tasks, similar to the original COCO dataset. Key metrics include the Object Keypoint Similarity (OKS), which evaluates the accuracy of predicted keypoints against ground truth annotations. These metrics allow for thorough performance comparisons between different models. For instance, the COCO-Pose pretrained models such as YOLO11n-pose, YOLO11s-pose, and others have specific performance metrics listed in the documentation, like mAPpose50-95 and mAPpose50.
The COCO-Pose dataset is split into three subsets:
These subsets help organize the training, validation, and testing phases effectively. For configuration details, explore the coco-pose.yaml
file available on GitHub.
The COCO-Pose dataset extends the COCO Keypoints 2017 annotations to include 17 keypoints for human figures, enabling detailed pose estimation. Standardized evaluation metrics (e.g., OKS) facilitate comparisons across different models. Applications of the COCO-Pose dataset span various domains, such as sports analytics, healthcare, and human-computer interaction, wherever detailed pose estimation of human figures is required. For practical use, leveraging pretrained models like those provided in the documentation (e.g., YOLO11n-pose) can significantly streamline the process (Key Features).
If you use the COCO-Pose dataset in your research or development work, please cite the paper with the following BibTeX entry.
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?