Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Discover the versatile and manageable COCO8-Seg dataset by Ultralytics, ideal for testing and debugging segmentation models or new detection approaches. | COCO8-Seg, Ultralytics, segmentation dataset, YOLO11, COCO 2017, model training, computer vision, dataset configuration |
Ultralytics COCO8-Seg is a small, but versatile instance segmentation dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging segmentation models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
This dataset is intended for use with Ultralytics HUB and YOLO11.
A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the COCO8-Seg dataset, the coco8-seg.yaml
file is maintained at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml.
!!! example "ultralytics/cfg/datasets/coco8-seg.yaml"
```yaml
--8<-- "ultralytics/cfg/datasets/coco8-seg.yaml"
```
To train a YOLO11n-seg model on the COCO8-Seg dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
!!! example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
```
Here are some examples of images from the COCO8-Seg dataset, along with their corresponding annotations:
The example showcases the variety and complexity of the images in the COCO8-Seg dataset and the benefits of using mosaicing during the training process.
If you use the COCO dataset in your research or development work, please cite the following paper:
!!! quote ""
=== "BibTeX"
```bibtex
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.
The COCO8-Seg dataset is a compact instance segmentation dataset by Ultralytics, consisting of the first 8 images from the COCO train 2017 set—4 images for training and 4 for validation. This dataset is tailored for testing and debugging segmentation models or experimenting with new detection methods. It is particularly useful with Ultralytics YOLO11 and HUB for rapid iteration and pipeline error-checking before scaling to larger datasets. For detailed usage, refer to the model Training page.
To train a YOLO11n-seg model on the COCO8-Seg dataset for 100 epochs with an image size of 640, you can use Python or CLI commands. Here's a quick example:
!!! example "Train Example"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n-seg.pt") # Load a pretrained model (recommended for training)
# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
```
For a thorough explanation of available arguments and configuration options, you can check the Training documentation.
The COCO8-Seg dataset offers a compact yet diverse set of 8 images, making it perfect for quickly testing and debugging segmentation models or experimenting with new detection techniques. Its small size allows for fast sanity checks and early pipeline validation, helping identify issues before scaling to larger datasets. Learn more about supported dataset formats in the Ultralytics segmentation dataset guide.
The YAML configuration file for the COCO8-Seg dataset is available in the Ultralytics repository. You can access the file directly at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml. The YAML file includes essential information about dataset paths, classes, and configuration settings required for model training and validation.
Using mosaicing during training helps increase the diversity and variety of objects and scenes in each training batch. This technique combines multiple images into a single composite image, enhancing the model's ability to generalize to different object sizes, aspect ratios, and contexts within the scene. Mosaicing is beneficial for improving a model's robustness and accuracy, especially when working with small datasets like COCO8-Seg. For an example of mosaiced images, see the Sample Images and Annotations section.
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
ultralytics is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?