1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
- # Ultralytics ๐ AGPL-3.0 License - https://ultralytics.com/license
- from typing import List
- from urllib.parse import urlsplit
- import numpy as np
- class TritonRemoteModel:
- """
- Client for interacting with a remote Triton Inference Server model.
- This class provides a convenient interface for sending inference requests to a Triton Inference Server
- and processing the responses.
- Attributes:
- endpoint (str): The name of the model on the Triton server.
- url (str): The URL of the Triton server.
- triton_client: The Triton client (either HTTP or gRPC).
- InferInput: The input class for the Triton client.
- InferRequestedOutput: The output request class for the Triton client.
- input_formats (List[str]): The data types of the model inputs.
- np_input_formats (List[type]): The numpy data types of the model inputs.
- input_names (List[str]): The names of the model inputs.
- output_names (List[str]): The names of the model outputs.
- metadata: The metadata associated with the model.
- Methods:
- __call__: Call the model with the given inputs and return the outputs.
- Examples:
- Initialize a Triton client with HTTP
- >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
- Make inference with numpy arrays
- >>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
- """
- def __init__(self, url: str, endpoint: str = "", scheme: str = ""):
- """
- Initialize the TritonRemoteModel for interacting with a remote Triton Inference Server.
- Arguments may be provided individually or parsed from a collective 'url' argument of the form
- <scheme>://<netloc>/<endpoint>/<task_name>
- Args:
- url (str): The URL of the Triton server.
- endpoint (str): The name of the model on the Triton server.
- scheme (str): The communication scheme ('http' or 'grpc').
- Examples:
- >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
- >>> model = TritonRemoteModel(url="http://localhost:8000/yolov8")
- """
- if not endpoint and not scheme: # Parse all args from URL string
- splits = urlsplit(url)
- endpoint = splits.path.strip("/").split("/")[0]
- scheme = splits.scheme
- url = splits.netloc
- self.endpoint = endpoint
- self.url = url
- # Choose the Triton client based on the communication scheme
- if scheme == "http":
- import tritonclient.http as client # noqa
- self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
- config = self.triton_client.get_model_config(endpoint)
- else:
- import tritonclient.grpc as client # noqa
- self.triton_client = client.InferenceServerClient(url=self.url, verbose=False, ssl=False)
- config = self.triton_client.get_model_config(endpoint, as_json=True)["config"]
- # Sort output names alphabetically, i.e. 'output0', 'output1', etc.
- config["output"] = sorted(config["output"], key=lambda x: x.get("name"))
- # Define model attributes
- type_map = {"TYPE_FP32": np.float32, "TYPE_FP16": np.float16, "TYPE_UINT8": np.uint8}
- self.InferRequestedOutput = client.InferRequestedOutput
- self.InferInput = client.InferInput
- self.input_formats = [x["data_type"] for x in config["input"]]
- self.np_input_formats = [type_map[x] for x in self.input_formats]
- self.input_names = [x["name"] for x in config["input"]]
- self.output_names = [x["name"] for x in config["output"]]
- self.metadata = eval(config.get("parameters", {}).get("metadata", {}).get("string_value", "None"))
- def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]:
- """
- Call the model with the given inputs.
- Args:
- *inputs (np.ndarray): Input data to the model. Each array should match the expected shape and type
- for the corresponding model input.
- Returns:
- (List[np.ndarray]): Model outputs with the same dtype as the input. Each element in the list
- corresponds to one of the model's output tensors.
- Examples:
- >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
- >>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
- """
- infer_inputs = []
- input_format = inputs[0].dtype
- for i, x in enumerate(inputs):
- if x.dtype != self.np_input_formats[i]:
- x = x.astype(self.np_input_formats[i])
- infer_input = self.InferInput(self.input_names[i], [*x.shape], self.input_formats[i].replace("TYPE_", ""))
- infer_input.set_data_from_numpy(x)
- infer_inputs.append(infer_input)
- infer_outputs = [self.InferRequestedOutput(output_name) for output_name in self.output_names]
- outputs = self.triton_client.infer(model_name=self.endpoint, inputs=infer_inputs, outputs=infer_outputs)
- return [outputs.as_numpy(output_name).astype(input_format) for output_name in self.output_names]
|