1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
- # Ultralytics ๐ AGPL-3.0 License - https://ultralytics.com/license
- from collections import abc
- from itertools import repeat
- from numbers import Number
- from typing import List
- import numpy as np
- from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh
- def _ntuple(n):
- """From PyTorch internals."""
- def parse(x):
- """Parse input to return n-tuple by repeating singleton values n times."""
- return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))
- return parse
- to_2tuple = _ntuple(2)
- to_4tuple = _ntuple(4)
- # `xyxy` means left top and right bottom
- # `xywh` means center x, center y and width, height(YOLO format)
- # `ltwh` means left top and width, height(COCO format)
- _formats = ["xyxy", "xywh", "ltwh"]
- __all__ = ("Bboxes", "Instances") # tuple or list
- class Bboxes:
- """
- A class for handling bounding boxes.
- The class supports various bounding box formats like 'xyxy', 'xywh', and 'ltwh'.
- Bounding box data should be provided in numpy arrays.
- Attributes:
- bboxes (np.ndarray): The bounding boxes stored in a 2D numpy array with shape (N, 4).
- format (str): The format of the bounding boxes ('xyxy', 'xywh', or 'ltwh').
- Note:
- This class does not handle normalization or denormalization of bounding boxes.
- """
- def __init__(self, bboxes, format="xyxy") -> None:
- """
- Initialize the Bboxes class with bounding box data in a specified format.
- Args:
- bboxes (np.ndarray): Array of bounding boxes with shape (N, 4) or (4,).
- format (str): Format of the bounding boxes, one of 'xyxy', 'xywh', or 'ltwh'.
- """
- assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
- bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
- assert bboxes.ndim == 2
- assert bboxes.shape[1] == 4
- self.bboxes = bboxes
- self.format = format
- # self.normalized = normalized
- def convert(self, format):
- """
- Convert bounding box format from one type to another.
- Args:
- format (str): Target format for conversion, one of 'xyxy', 'xywh', or 'ltwh'.
- """
- assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
- if self.format == format:
- return
- elif self.format == "xyxy":
- func = xyxy2xywh if format == "xywh" else xyxy2ltwh
- elif self.format == "xywh":
- func = xywh2xyxy if format == "xyxy" else xywh2ltwh
- else:
- func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
- self.bboxes = func(self.bboxes)
- self.format = format
- def areas(self):
- """Return box areas."""
- return (
- (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1]) # format xyxy
- if self.format == "xyxy"
- else self.bboxes[:, 3] * self.bboxes[:, 2] # format xywh or ltwh
- )
- # def denormalize(self, w, h):
- # if not self.normalized:
- # return
- # assert (self.bboxes <= 1.0).all()
- # self.bboxes[:, 0::2] *= w
- # self.bboxes[:, 1::2] *= h
- # self.normalized = False
- #
- # def normalize(self, w, h):
- # if self.normalized:
- # return
- # assert (self.bboxes > 1.0).any()
- # self.bboxes[:, 0::2] /= w
- # self.bboxes[:, 1::2] /= h
- # self.normalized = True
- def mul(self, scale):
- """
- Multiply bounding box coordinates by scale factor(s).
- Args:
- scale (int | tuple | list): Scale factor(s) for four coordinates.
- If int, the same scale is applied to all coordinates.
- """
- if isinstance(scale, Number):
- scale = to_4tuple(scale)
- assert isinstance(scale, (tuple, list))
- assert len(scale) == 4
- self.bboxes[:, 0] *= scale[0]
- self.bboxes[:, 1] *= scale[1]
- self.bboxes[:, 2] *= scale[2]
- self.bboxes[:, 3] *= scale[3]
- def add(self, offset):
- """
- Add offset to bounding box coordinates.
- Args:
- offset (int | tuple | list): Offset(s) for four coordinates.
- If int, the same offset is applied to all coordinates.
- """
- if isinstance(offset, Number):
- offset = to_4tuple(offset)
- assert isinstance(offset, (tuple, list))
- assert len(offset) == 4
- self.bboxes[:, 0] += offset[0]
- self.bboxes[:, 1] += offset[1]
- self.bboxes[:, 2] += offset[2]
- self.bboxes[:, 3] += offset[3]
- def __len__(self):
- """Return the number of boxes."""
- return len(self.bboxes)
- @classmethod
- def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
- """
- Concatenate a list of Bboxes objects into a single Bboxes object.
- Args:
- boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
- axis (int, optional): The axis along which to concatenate the bounding boxes.
- Returns:
- (Bboxes): A new Bboxes object containing the concatenated bounding boxes.
- Note:
- The input should be a list or tuple of Bboxes objects.
- """
- assert isinstance(boxes_list, (list, tuple))
- if not boxes_list:
- return cls(np.empty(0))
- assert all(isinstance(box, Bboxes) for box in boxes_list)
- if len(boxes_list) == 1:
- return boxes_list[0]
- return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))
- def __getitem__(self, index) -> "Bboxes":
- """
- Retrieve a specific bounding box or a set of bounding boxes using indexing.
- Args:
- index (int | slice | np.ndarray): The index, slice, or boolean array to select
- the desired bounding boxes.
- Returns:
- (Bboxes): A new Bboxes object containing the selected bounding boxes.
- Raises:
- AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.
- Note:
- When using boolean indexing, make sure to provide a boolean array with the same
- length as the number of bounding boxes.
- """
- if isinstance(index, int):
- return Bboxes(self.bboxes[index].reshape(1, -1))
- b = self.bboxes[index]
- assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
- return Bboxes(b)
- class Instances:
- """
- Container for bounding boxes, segments, and keypoints of detected objects in an image.
- Attributes:
- _bboxes (Bboxes): Internal object for handling bounding box operations.
- keypoints (np.ndarray): Keypoints with shape (N, 17, 3) in format (x, y, visible).
- normalized (bool): Flag indicating whether the bounding box coordinates are normalized.
- segments (np.ndarray): Segments array with shape (N, M, 2) after resampling.
- Methods:
- convert_bbox: Convert bounding box format.
- scale: Scale coordinates by given factors.
- denormalize: Convert normalized coordinates to absolute coordinates.
- normalize: Convert absolute coordinates to normalized coordinates.
- add_padding: Add padding to coordinates.
- flipud: Flip coordinates vertically.
- fliplr: Flip coordinates horizontally.
- clip: Clip coordinates to stay within image boundaries.
- remove_zero_area_boxes: Remove boxes with zero area.
- update: Update instance variables.
- concatenate: Concatenate multiple Instances objects.
- Examples:
- >>> instances = Instances(
- ... bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
- ... segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
- ... keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]]),
- ... )
- """
- def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
- """
- Initialize the object with bounding boxes, segments, and keypoints.
- Args:
- bboxes (np.ndarray): Bounding boxes, shape (N, 4).
- segments (List | np.ndarray, optional): Segmentation masks.
- keypoints (np.ndarray, optional): Keypoints, shape (N, 17, 3) in format (x, y, visible).
- bbox_format (str, optional): Format of bboxes.
- normalized (bool, optional): Whether the coordinates are normalized.
- """
- self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
- self.keypoints = keypoints
- self.normalized = normalized
- self.segments = segments
- def convert_bbox(self, format):
- """
- Convert bounding box format.
- Args:
- format (str): Target format for conversion, one of 'xyxy', 'xywh', or 'ltwh'.
- """
- self._bboxes.convert(format=format)
- @property
- def bbox_areas(self):
- """Calculate the area of bounding boxes."""
- return self._bboxes.areas()
- def scale(self, scale_w, scale_h, bbox_only=False):
- """
- Scale coordinates by given factors.
- Args:
- scale_w (float): Scale factor for width.
- scale_h (float): Scale factor for height.
- bbox_only (bool, optional): Whether to scale only bounding boxes.
- """
- self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
- if bbox_only:
- return
- self.segments[..., 0] *= scale_w
- self.segments[..., 1] *= scale_h
- if self.keypoints is not None:
- self.keypoints[..., 0] *= scale_w
- self.keypoints[..., 1] *= scale_h
- def denormalize(self, w, h):
- """
- Convert normalized coordinates to absolute coordinates.
- Args:
- w (int): Image width.
- h (int): Image height.
- """
- if not self.normalized:
- return
- self._bboxes.mul(scale=(w, h, w, h))
- self.segments[..., 0] *= w
- self.segments[..., 1] *= h
- if self.keypoints is not None:
- self.keypoints[..., 0] *= w
- self.keypoints[..., 1] *= h
- self.normalized = False
- def normalize(self, w, h):
- """
- Convert absolute coordinates to normalized coordinates.
- Args:
- w (int): Image width.
- h (int): Image height.
- """
- if self.normalized:
- return
- self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
- self.segments[..., 0] /= w
- self.segments[..., 1] /= h
- if self.keypoints is not None:
- self.keypoints[..., 0] /= w
- self.keypoints[..., 1] /= h
- self.normalized = True
- def add_padding(self, padw, padh):
- """
- Add padding to coordinates.
- Args:
- padw (int): Padding width.
- padh (int): Padding height.
- """
- assert not self.normalized, "you should add padding with absolute coordinates."
- self._bboxes.add(offset=(padw, padh, padw, padh))
- self.segments[..., 0] += padw
- self.segments[..., 1] += padh
- if self.keypoints is not None:
- self.keypoints[..., 0] += padw
- self.keypoints[..., 1] += padh
- def __getitem__(self, index) -> "Instances":
- """
- Retrieve a specific instance or a set of instances using indexing.
- Args:
- index (int | slice | np.ndarray): The index, slice, or boolean array to select the desired instances.
- Returns:
- (Instances): A new Instances object containing the selected boxes, segments, and keypoints if present.
- Note:
- When using boolean indexing, make sure to provide a boolean array with the same
- length as the number of instances.
- """
- segments = self.segments[index] if len(self.segments) else self.segments
- keypoints = self.keypoints[index] if self.keypoints is not None else None
- bboxes = self.bboxes[index]
- bbox_format = self._bboxes.format
- return Instances(
- bboxes=bboxes,
- segments=segments,
- keypoints=keypoints,
- bbox_format=bbox_format,
- normalized=self.normalized,
- )
- def flipud(self, h):
- """
- Flip coordinates vertically.
- Args:
- h (int): Image height.
- """
- if self._bboxes.format == "xyxy":
- y1 = self.bboxes[:, 1].copy()
- y2 = self.bboxes[:, 3].copy()
- self.bboxes[:, 1] = h - y2
- self.bboxes[:, 3] = h - y1
- else:
- self.bboxes[:, 1] = h - self.bboxes[:, 1]
- self.segments[..., 1] = h - self.segments[..., 1]
- if self.keypoints is not None:
- self.keypoints[..., 1] = h - self.keypoints[..., 1]
- def fliplr(self, w):
- """
- Flip coordinates horizontally.
- Args:
- w (int): Image width.
- """
- if self._bboxes.format == "xyxy":
- x1 = self.bboxes[:, 0].copy()
- x2 = self.bboxes[:, 2].copy()
- self.bboxes[:, 0] = w - x2
- self.bboxes[:, 2] = w - x1
- else:
- self.bboxes[:, 0] = w - self.bboxes[:, 0]
- self.segments[..., 0] = w - self.segments[..., 0]
- if self.keypoints is not None:
- self.keypoints[..., 0] = w - self.keypoints[..., 0]
- def clip(self, w, h):
- """
- Clip coordinates to stay within image boundaries.
- Args:
- w (int): Image width.
- h (int): Image height.
- """
- ori_format = self._bboxes.format
- self.convert_bbox(format="xyxy")
- self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
- self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
- if ori_format != "xyxy":
- self.convert_bbox(format=ori_format)
- self.segments[..., 0] = self.segments[..., 0].clip(0, w)
- self.segments[..., 1] = self.segments[..., 1].clip(0, h)
- if self.keypoints is not None:
- # Set out of bounds visibility to zero
- self.keypoints[..., 2][
- (self.keypoints[..., 0] < 0)
- | (self.keypoints[..., 0] > w)
- | (self.keypoints[..., 1] < 0)
- | (self.keypoints[..., 1] > h)
- ] = 0.0
- def remove_zero_area_boxes(self):
- """
- Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height.
- Returns:
- (np.ndarray): Boolean array indicating which boxes were kept.
- """
- good = self.bbox_areas > 0
- if not all(good):
- self._bboxes = self._bboxes[good]
- if len(self.segments):
- self.segments = self.segments[good]
- if self.keypoints is not None:
- self.keypoints = self.keypoints[good]
- return good
- def update(self, bboxes, segments=None, keypoints=None):
- """
- Update instance variables.
- Args:
- bboxes (np.ndarray): New bounding boxes.
- segments (np.ndarray, optional): New segments.
- keypoints (np.ndarray, optional): New keypoints.
- """
- self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
- if segments is not None:
- self.segments = segments
- if keypoints is not None:
- self.keypoints = keypoints
- def __len__(self):
- """Return the length of the instance list."""
- return len(self.bboxes)
- @classmethod
- def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
- """
- Concatenate a list of Instances objects into a single Instances object.
- Args:
- instances_list (List[Instances]): A list of Instances objects to concatenate.
- axis (int, optional): The axis along which the arrays will be concatenated.
- Returns:
- (Instances): A new Instances object containing the concatenated bounding boxes,
- segments, and keypoints if present.
- Note:
- The `Instances` objects in the list should have the same properties, such as
- the format of the bounding boxes, whether keypoints are present, and if the
- coordinates are normalized.
- """
- assert isinstance(instances_list, (list, tuple))
- if not instances_list:
- return cls(np.empty(0))
- assert all(isinstance(instance, Instances) for instance in instances_list)
- if len(instances_list) == 1:
- return instances_list[0]
- use_keypoint = instances_list[0].keypoints is not None
- bbox_format = instances_list[0]._bboxes.format
- normalized = instances_list[0].normalized
- cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
- seg_len = [b.segments.shape[1] for b in instances_list]
- if len(frozenset(seg_len)) > 1: # resample segments if there's different length
- max_len = max(seg_len)
- cat_segments = np.concatenate(
- [
- resample_segments(list(b.segments), max_len)
- if len(b.segments)
- else np.zeros((0, max_len, 2), dtype=np.float32) # re-generating empty segments
- for b in instances_list
- ],
- axis=axis,
- )
- else:
- cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
- cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
- return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)
- @property
- def bboxes(self):
- """Return bounding boxes."""
- return self._bboxes.bboxes
|