1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
- # Ultralytics ๐ AGPL-3.0 License - https://ultralytics.com/license
- import json
- from pathlib import Path
- import torch
- from ultralytics.utils import IS_JETSON, LOGGER
- def export_onnx(
- torch_model,
- im,
- onnx_file,
- opset=14,
- input_names=["images"],
- output_names=["output0"],
- dynamic=False,
- ):
- """
- Exports a PyTorch model to ONNX format.
- Args:
- torch_model (torch.nn.Module): The PyTorch model to export.
- im (torch.Tensor): Example input tensor for the model.
- onnx_file (str): Path to save the exported ONNX file.
- opset (int): ONNX opset version to use for export.
- input_names (list): List of input tensor names.
- output_names (list): List of output tensor names.
- dynamic (bool | dict, optional): Whether to enable dynamic axes. Defaults to False.
- Notes:
- - Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
- """
- torch.onnx.export(
- torch_model,
- im,
- onnx_file,
- verbose=False,
- opset_version=opset,
- do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
- input_names=input_names,
- output_names=output_names,
- dynamic_axes=dynamic or None,
- )
- def export_engine(
- onnx_file,
- engine_file=None,
- workspace=None,
- half=False,
- int8=False,
- dynamic=False,
- shape=(1, 3, 640, 640),
- dla=None,
- dataset=None,
- metadata=None,
- verbose=False,
- prefix="",
- ):
- """
- Exports a YOLO model to TensorRT engine format.
- Args:
- onnx_file (str): Path to the ONNX file to be converted.
- engine_file (str, optional): Path to save the generated TensorRT engine file.
- workspace (int, optional): Workspace size in GB for TensorRT. Defaults to None.
- half (bool, optional): Enable FP16 precision. Defaults to False.
- int8 (bool, optional): Enable INT8 precision. Defaults to False.
- dynamic (bool, optional): Enable dynamic input shapes. Defaults to False.
- shape (tuple, optional): Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).
- dla (int, optional): DLA core to use (Jetson devices only). Defaults to None.
- dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration. Defaults to None.
- metadata (dict, optional): Metadata to include in the engine file. Defaults to None.
- verbose (bool, optional): Enable verbose logging. Defaults to False.
- prefix (str, optional): Prefix for log messages. Defaults to "".
- Raises:
- ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
- RuntimeError: If the ONNX file cannot be parsed.
- Notes:
- - TensorRT version compatibility is handled for workspace size and engine building.
- - INT8 calibration requires a dataset and generates a calibration cache.
- - Metadata is serialized and written to the engine file if provided.
- """
- import tensorrt as trt # noqa
- engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
- logger = trt.Logger(trt.Logger.INFO)
- if verbose:
- logger.min_severity = trt.Logger.Severity.VERBOSE
- # Engine builder
- builder = trt.Builder(logger)
- config = builder.create_builder_config()
- workspace = int((workspace or 0) * (1 << 30))
- is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
- if is_trt10 and workspace > 0:
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
- elif workspace > 0: # TensorRT versions 7, 8
- config.max_workspace_size = workspace
- flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
- network = builder.create_network(flag)
- half = builder.platform_has_fast_fp16 and half
- int8 = builder.platform_has_fast_int8 and int8
- # Optionally switch to DLA if enabled
- if dla is not None:
- if not IS_JETSON:
- raise ValueError("DLA is only available on NVIDIA Jetson devices")
- LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
- if not half and not int8:
- raise ValueError(
- "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
- )
- config.default_device_type = trt.DeviceType.DLA
- config.DLA_core = int(dla)
- config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
- # Read ONNX file
- parser = trt.OnnxParser(network, logger)
- if not parser.parse_from_file(onnx_file):
- raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
- # Network inputs
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
- for inp in inputs:
- LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
- for out in outputs:
- LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
- if dynamic:
- if shape[0] <= 1:
- LOGGER.warning(f"{prefix} 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
- profile = builder.create_optimization_profile()
- min_shape = (1, shape[1], 32, 32) # minimum input shape
- max_shape = (*shape[:2], *(int(max(1, workspace or 1) * d) for d in shape[2:])) # max input shape
- for inp in inputs:
- profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
- config.add_optimization_profile(profile)
- LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
- if int8:
- config.set_flag(trt.BuilderFlag.INT8)
- config.set_calibration_profile(profile)
- config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
- class EngineCalibrator(trt.IInt8Calibrator):
- """
- Custom INT8 calibrator for TensorRT.
- Args:
- dataset (object): Dataset for calibration.
- batch (int): Batch size for calibration.
- cache (str, optional): Path to save the calibration cache. Defaults to "".
- """
- def __init__(
- self,
- dataset, # ultralytics.data.build.InfiniteDataLoader
- cache: str = "",
- ) -> None:
- trt.IInt8Calibrator.__init__(self)
- self.dataset = dataset
- self.data_iter = iter(dataset)
- self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
- self.batch = dataset.batch_size
- self.cache = Path(cache)
- def get_algorithm(self) -> trt.CalibrationAlgoType:
- """Get the calibration algorithm to use."""
- return self.algo
- def get_batch_size(self) -> int:
- """Get the batch size to use for calibration."""
- return self.batch or 1
- def get_batch(self, names) -> list:
- """Get the next batch to use for calibration, as a list of device memory pointers."""
- try:
- im0s = next(self.data_iter)["img"] / 255.0
- im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
- return [int(im0s.data_ptr())]
- except StopIteration:
- # Return [] or None, signal to TensorRT there is no calibration data remaining
- return None
- def read_calibration_cache(self) -> bytes:
- """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
- if self.cache.exists() and self.cache.suffix == ".cache":
- return self.cache.read_bytes()
- def write_calibration_cache(self, cache) -> None:
- """Write calibration cache to disk."""
- _ = self.cache.write_bytes(cache)
- # Load dataset w/ builder (for batching) and calibrate
- config.int8_calibrator = EngineCalibrator(
- dataset=dataset,
- cache=str(Path(onnx_file).with_suffix(".cache")),
- )
- elif half:
- config.set_flag(trt.BuilderFlag.FP16)
- # Write file
- build = builder.build_serialized_network if is_trt10 else builder.build_engine
- with build(network, config) as engine, open(engine_file, "wb") as t:
- # Metadata
- if metadata is not None:
- meta = json.dumps(metadata)
- t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
- t.write(meta.encode())
- # Model
- t.write(engine if is_trt10 else engine.serialize())
|