Ultralytics:main
from
ultralytics:yoloe-vp-fix
{% macro param_table(params=None) %}
Argument | Type | Default | Description |
---|
{%- set default_params = {
"show": ["bool", "False", "If True
, displays the annotated images or videos in a window. Useful for immediate visual feedback during development or testing."],
"save": ["bool", "False or True", "Enables saving of the annotated images or videos to file. Useful for documentation, further analysis, or sharing results. Defaults to True when using CLI & False when used in Python."],
"save_frames": ["bool", "False", "When processing videos, saves individual frames as images. Useful for extracting specific frames or for detailed frame-by-frame analysis."],
"save_txt": ["bool", "False", "Saves detection results in a text file, following the format [class] [x_center] [y_center] [width] [height] [confidence]
. Useful for integration with other analysis tools."],
"save_conf": ["bool", "False", "Includes confidence scores in the saved text files. Enhances the detail available for post-processing and analysis."],
"save_crop": ["bool", "False", "Saves cropped images of detections. Useful for dataset augmentation, analysis, or creating focused datasets for specific objects."],
"show_labels": ["bool", "True", "Displays labels for each detection in the visual output. Provides immediate understanding of detected objects."],
"show_conf": ["bool", "True", "Displays the confidence score for each detection alongside the label. Gives insight into the model's certainty for each detection."],
"show_boxes": ["bool", "True", "Draws bounding boxes around detected objects. Essential for visual identification and location of objects in images or video frames."],
"line_width": ["None or int", "None", "Specifies the line width of bounding boxes. If None
, the line width is automatically adjusted based on the image size. Provides visual customization for clarity."],
"font_size": ["float", "None", "Text font size for annotations. Scales automatically with image size if set to None
."],
"font": ["str", "'Arial.ttf'", "Font name or path for text annotations in the visualization."],
"pil": ["bool", "False", "Return image as a PIL Image object instead of numpy array."],
"kpt_radius": ["int", "5", "Radius of keypoints when visualizing pose estimation results."],
"kpt_line": ["bool", "True", "Connect keypoints with lines when visualizing pose estimation."],
"masks": ["bool", "True", "Display segmentation masks in the visualization output."],
"probs": ["bool", "True", "Include classification probabilities in the visualization."],
"filename": ["str", "None", "Path and filename to save the annotated image when save=True
."],
"color_mode": ["str", "'class'", "Specify the coloring mode for visualizations, e.g., 'instance' or 'class'."],
"txt_color": ["tuple[int, int, int]", "(255, 255, 255)", "RGB text color for classification task annotations."]
} %}
{%- if not params %}
{%- for param, details in default_params.items() %}
| {{ param }}
| {{ details[0] }}
| {{ details[1] }}
| {{ details[2] }} |
{%- endfor %}
{%- else %}
{%- for param in params %}
{%- if param in default_params %}
| {{ param }}
| {{ default_params[param][0] }}
| {{ default_params[param][1] }}
| {{ default_params[param][2] }} |
{%- endif %}
{%- endfor %}
{%- endif %}
{% endmacro %}
Press p or to see the previous file or, n or to see the next file