Ultralytics:main
from
ultralytics:yoloe-vp-fix
{% macro param_table(params=None) %}
Argument | Type | Default | Description |
---|
{%- set default_params = {
"model": ["str", "None", "Path to Ultralytics YOLO Model File."],
"region": ["list", "[(20, 400), (1260, 400)]", "List of points defining the counting region."],
"show_in": ["bool", "True", "Flag to control whether to display the in counts on the video stream."],
"show_out": ["bool", "True", "Flag to control whether to display the out counts on the video stream."],
"analytics_type": ["str", "line", "Type of graph, i.e., line
, bar
, area
, or pie
."],
"colormap": ["int", "cv2.COLORMAP_JET", "Colormap to use for the heatmap."],
"json_file": ["str", "None", "Path to the JSON file that contains all parking coordinates data."],
"up_angle": ["float", "145.0", "Angle threshold for the 'up' pose."],
"kpts": ["list[int, int, int]", "[6, 8, 10]", "List of keypoints used for monitoring workouts. These keypoints correspond to body joints or parts, such as shoulders, elbows, and wrists, for exercises like push-ups, pull-ups, squats, ab-workouts."],
"down_angle": ["float", "90.0", "Angle threshold for the 'down' pose."],
"blur_ratio": ["float", "0.5", "Adjusts percentage of blur intensity, with values in range 0.1 - 1.0
."],
"crop_dir": ["str", ""cropped-detections"", "Directory name for storing cropped detections."],
"records": ["int", "5", "Total detections count to trigger an email with security alarm system."],
"vision_point": ["tuple[int, int]", "(50, 50)", "The point where vision will track objects and draw paths using VisionEye Solution."],
"tracker": ["str", "'botsort.yaml'", "Specifies the tracking algorithm to use, e.g., bytetrack.yaml
or botsort.yaml
."],
"conf": ["float", "0.3", "Sets the confidence threshold for detections; lower values allow more objects to be tracked but may include false positives."],
"iou": ["float", "0.5", "Sets the Intersection over Union (IoU) threshold for filtering overlapping detections."],
"classes": ["list", "None", "Filters results by class index. For example, classes=[0, 2, 3]
only tracks the specified classes."],
"verbose": ["bool", "True", "Controls the display of tracking results, providing a visual output of tracked objects."],
"device": ["str", "None", "Specifies the device for inference (e.g., cpu
, cuda:0
or 0
). Allows users to select between CPU, a specific GPU, or other compute devices for model execution."],
"show": ["bool", "False", "If True
, displays the annotated images or videos in a window. Useful for immediate visual feedback during development or testing."],
"line_width": ["None or int", "None", "Specifies the line width of bounding boxes. If None
, the line width is automatically adjusted based on the image size. Provides visual customization for clarity."]
} %}
{%- if not params %}
{%- for param, details in default_params.items() %}
| {{ param }}
| {{ details[0] }}
| {{ details[1] }}
| {{ details[2] }} |
{%- endfor %}
{%- else %}
{%- for param in params %}
{%- if param in default_params %}
| {{ param }}
| {{ default_params[param][0] }}
| {{ default_params[param][1] }}
| {{ default_params[param][2] }} |
{%- endif %}
{%- endfor %}
{%- endif %}
{% endmacro %}
Press p or to see the previous file or, n or to see the next file