Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#19875 Adopt H1 headers for Docs page HTML <title>

Merged
Glenn Jocher merged 1 commits into Ultralytics:main from ultralytics:docs-titles
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
  1. #![allow(clippy::type_complexity)]
  2. use ab_glyph::FontArc;
  3. use anyhow::Result;
  4. use image::{DynamicImage, GenericImageView, ImageBuffer};
  5. use ndarray::{s, Array, Axis, IxDyn};
  6. use rand::{thread_rng, Rng};
  7. use std::path::PathBuf;
  8. use crate::{
  9. gen_time_string, load_font, non_max_suppression, Args, Batch, Bbox, Embedding, OrtBackend,
  10. OrtConfig, OrtEP, Point2, YOLOResult, YOLOTask, SKELETON,
  11. };
  12. pub struct YOLOv8 {
  13. // YOLOv8 model for all yolo-tasks
  14. engine: OrtBackend,
  15. nc: u32,
  16. nk: u32,
  17. nm: u32,
  18. height: u32,
  19. width: u32,
  20. batch: u32,
  21. task: YOLOTask,
  22. conf: f32,
  23. kconf: f32,
  24. iou: f32,
  25. names: Vec<String>,
  26. color_palette: Vec<(u8, u8, u8)>,
  27. profile: bool,
  28. plot: bool,
  29. }
  30. impl YOLOv8 {
  31. pub fn new(config: Args) -> Result<Self> {
  32. // execution provider
  33. let ep = if config.trt {
  34. OrtEP::Trt(config.device_id)
  35. } else if config.cuda {
  36. OrtEP::CUDA(config.device_id)
  37. } else {
  38. OrtEP::CPU
  39. };
  40. // batch
  41. let batch = Batch {
  42. opt: config.batch,
  43. min: config.batch_min,
  44. max: config.batch_max,
  45. };
  46. // build ort engine
  47. let ort_args = OrtConfig {
  48. ep,
  49. batch,
  50. f: config.model,
  51. task: config.task,
  52. trt_fp16: config.fp16,
  53. image_size: (config.height, config.width),
  54. };
  55. let engine = OrtBackend::build(ort_args)?;
  56. // get batch, height, width, tasks, nc, nk, nm
  57. let (batch, height, width, task) = (
  58. engine.batch(),
  59. engine.height(),
  60. engine.width(),
  61. engine.task(),
  62. );
  63. let nc = engine.nc().or(config.nc).unwrap_or_else(|| {
  64. panic!("Failed to get num_classes, make it explicit with `--nc`");
  65. });
  66. let (nk, nm) = match task {
  67. YOLOTask::Pose => {
  68. let nk = engine.nk().or(config.nk).unwrap_or_else(|| {
  69. panic!("Failed to get num_keypoints, make it explicit with `--nk`");
  70. });
  71. (nk, 0)
  72. }
  73. YOLOTask::Segment => {
  74. let nm = engine.nm().or(config.nm).unwrap_or_else(|| {
  75. panic!("Failed to get num_masks, make it explicit with `--nm`");
  76. });
  77. (0, nm)
  78. }
  79. _ => (0, 0),
  80. };
  81. // class names
  82. let names = engine.names().unwrap_or(vec!["Unknown".to_string()]);
  83. // color palette
  84. let mut rng = thread_rng();
  85. let color_palette: Vec<_> = names
  86. .iter()
  87. .map(|_| {
  88. (
  89. rng.gen_range(0..=255),
  90. rng.gen_range(0..=255),
  91. rng.gen_range(0..=255),
  92. )
  93. })
  94. .collect();
  95. Ok(Self {
  96. engine,
  97. names,
  98. conf: config.conf,
  99. kconf: config.kconf,
  100. iou: config.iou,
  101. color_palette,
  102. profile: config.profile,
  103. plot: config.plot,
  104. nc,
  105. nk,
  106. nm,
  107. height,
  108. width,
  109. batch,
  110. task,
  111. })
  112. }
  113. pub fn scale_wh(&self, w0: f32, h0: f32, w1: f32, h1: f32) -> (f32, f32, f32) {
  114. let r = (w1 / w0).min(h1 / h0);
  115. (r, (w0 * r).round(), (h0 * r).round())
  116. }
  117. pub fn preprocess(&mut self, xs: &Vec<DynamicImage>) -> Result<Array<f32, IxDyn>> {
  118. let mut ys =
  119. Array::ones((xs.len(), 3, self.height() as usize, self.width() as usize)).into_dyn();
  120. ys.fill(144.0 / 255.0);
  121. for (idx, x) in xs.iter().enumerate() {
  122. let img = match self.task() {
  123. YOLOTask::Classify => x.resize_exact(
  124. self.width(),
  125. self.height(),
  126. image::imageops::FilterType::Triangle,
  127. ),
  128. _ => {
  129. let (w0, h0) = x.dimensions();
  130. let w0 = w0 as f32;
  131. let h0 = h0 as f32;
  132. let (_, w_new, h_new) =
  133. self.scale_wh(w0, h0, self.width() as f32, self.height() as f32); // f32 round
  134. x.resize_exact(
  135. w_new as u32,
  136. h_new as u32,
  137. if let YOLOTask::Segment = self.task() {
  138. image::imageops::FilterType::CatmullRom
  139. } else {
  140. image::imageops::FilterType::Triangle
  141. },
  142. )
  143. }
  144. };
  145. for (x, y, rgb) in img.pixels() {
  146. let x = x as usize;
  147. let y = y as usize;
  148. let [r, g, b, _] = rgb.0;
  149. ys[[idx, 0, y, x]] = (r as f32) / 255.0;
  150. ys[[idx, 1, y, x]] = (g as f32) / 255.0;
  151. ys[[idx, 2, y, x]] = (b as f32) / 255.0;
  152. }
  153. }
  154. Ok(ys)
  155. }
  156. pub fn run(&mut self, xs: &Vec<DynamicImage>) -> Result<Vec<YOLOResult>> {
  157. // pre-process
  158. let t_pre = std::time::Instant::now();
  159. let xs_ = self.preprocess(xs)?;
  160. if self.profile {
  161. println!("[Model Preprocess]: {:?}", t_pre.elapsed());
  162. }
  163. // run
  164. let t_run = std::time::Instant::now();
  165. let ys = self.engine.run(xs_, self.profile)?;
  166. if self.profile {
  167. println!("[Model Inference]: {:?}", t_run.elapsed());
  168. }
  169. // post-process
  170. let t_post = std::time::Instant::now();
  171. let ys = self.postprocess(ys, xs)?;
  172. if self.profile {
  173. println!("[Model Postprocess]: {:?}", t_post.elapsed());
  174. }
  175. // plot and save
  176. if self.plot {
  177. self.plot_and_save(&ys, xs, Some(&SKELETON));
  178. }
  179. Ok(ys)
  180. }
  181. pub fn postprocess(
  182. &self,
  183. xs: Vec<Array<f32, IxDyn>>,
  184. xs0: &[DynamicImage],
  185. ) -> Result<Vec<YOLOResult>> {
  186. if let YOLOTask::Classify = self.task() {
  187. let mut ys = Vec::new();
  188. let preds = &xs[0];
  189. for batch in preds.axis_iter(Axis(0)) {
  190. ys.push(YOLOResult::new(
  191. Some(Embedding::new(batch.into_owned())),
  192. None,
  193. None,
  194. None,
  195. ));
  196. }
  197. Ok(ys)
  198. } else {
  199. const CXYWH_OFFSET: usize = 4; // cxcywh
  200. const KPT_STEP: usize = 3; // xyconf
  201. let preds = &xs[0];
  202. let protos = {
  203. if xs.len() > 1 {
  204. Some(&xs[1])
  205. } else {
  206. None
  207. }
  208. };
  209. let mut ys = Vec::new();
  210. for (idx, anchor) in preds.axis_iter(Axis(0)).enumerate() {
  211. // [bs, 4 + nc + nm, anchors]
  212. // input image
  213. let width_original = xs0[idx].width() as f32;
  214. let height_original = xs0[idx].height() as f32;
  215. let ratio = (self.width() as f32 / width_original)
  216. .min(self.height() as f32 / height_original);
  217. // save each result
  218. let mut data: Vec<(Bbox, Option<Vec<Point2>>, Option<Vec<f32>>)> = Vec::new();
  219. for pred in anchor.axis_iter(Axis(1)) {
  220. // split preds for different tasks
  221. let bbox = pred.slice(s![0..CXYWH_OFFSET]);
  222. let clss = pred.slice(s![CXYWH_OFFSET..CXYWH_OFFSET + self.nc() as usize]);
  223. let kpts = {
  224. if let YOLOTask::Pose = self.task() {
  225. Some(pred.slice(s![pred.len() - KPT_STEP * self.nk() as usize..]))
  226. } else {
  227. None
  228. }
  229. };
  230. let coefs = {
  231. if let YOLOTask::Segment = self.task() {
  232. Some(pred.slice(s![pred.len() - self.nm() as usize..]).to_vec())
  233. } else {
  234. None
  235. }
  236. };
  237. // confidence and id
  238. let (id, &confidence) = clss
  239. .into_iter()
  240. .enumerate()
  241. .reduce(|max, x| if x.1 > max.1 { x } else { max })
  242. .unwrap(); // definitely will not panic!
  243. // confidence filter
  244. if confidence < self.conf {
  245. continue;
  246. }
  247. // bbox re-scale
  248. let cx = bbox[0] / ratio;
  249. let cy = bbox[1] / ratio;
  250. let w = bbox[2] / ratio;
  251. let h = bbox[3] / ratio;
  252. let x = cx - w / 2.;
  253. let y = cy - h / 2.;
  254. let y_bbox = Bbox::new(
  255. x.max(0.0f32).min(width_original),
  256. y.max(0.0f32).min(height_original),
  257. w,
  258. h,
  259. id,
  260. confidence,
  261. );
  262. // kpts
  263. let y_kpts = {
  264. if let Some(kpts) = kpts {
  265. let mut kpts_ = Vec::new();
  266. // rescale
  267. for i in 0..self.nk() as usize {
  268. let kx = kpts[KPT_STEP * i] / ratio;
  269. let ky = kpts[KPT_STEP * i + 1] / ratio;
  270. let kconf = kpts[KPT_STEP * i + 2];
  271. if kconf < self.kconf {
  272. kpts_.push(Point2::default());
  273. } else {
  274. kpts_.push(Point2::new_with_conf(
  275. kx.max(0.0f32).min(width_original),
  276. ky.max(0.0f32).min(height_original),
  277. kconf,
  278. ));
  279. }
  280. }
  281. Some(kpts_)
  282. } else {
  283. None
  284. }
  285. };
  286. // data merged
  287. data.push((y_bbox, y_kpts, coefs));
  288. }
  289. // nms
  290. non_max_suppression(&mut data, self.iou);
  291. // decode
  292. let mut y_bboxes: Vec<Bbox> = Vec::new();
  293. let mut y_kpts: Vec<Vec<Point2>> = Vec::new();
  294. let mut y_masks: Vec<Vec<u8>> = Vec::new();
  295. for elem in data.into_iter() {
  296. if let Some(kpts) = elem.1 {
  297. y_kpts.push(kpts)
  298. }
  299. // decode masks
  300. if let Some(coefs) = elem.2 {
  301. let proto = protos.unwrap().slice(s![idx, .., .., ..]);
  302. let (nm, nh, nw) = proto.dim();
  303. // coefs * proto -> mask
  304. let coefs = Array::from_shape_vec((1, nm), coefs)?; // (n, nm)
  305. let proto = proto.to_owned();
  306. let proto = proto.to_shape((nm, nh * nw))?; // (nm, nh*nw)
  307. let mask = coefs.dot(&proto); // (nh, nw, n)
  308. let mask = mask.to_shape((nh, nw, 1))?;
  309. // build image from ndarray
  310. let mask_im: ImageBuffer<image::Luma<_>, Vec<f32>> =
  311. match ImageBuffer::from_raw(
  312. nw as u32,
  313. nh as u32,
  314. mask.to_owned().into_raw_vec_and_offset().0,
  315. ) {
  316. Some(image) => image,
  317. None => panic!("can not create image from ndarray"),
  318. };
  319. let mut mask_im = image::DynamicImage::from(mask_im); // -> dyn
  320. // rescale masks
  321. let (_, w_mask, h_mask) =
  322. self.scale_wh(width_original, height_original, nw as f32, nh as f32);
  323. let mask_cropped = mask_im.crop(0, 0, w_mask as u32, h_mask as u32);
  324. let mask_original = mask_cropped.resize_exact(
  325. // resize_to_fill
  326. width_original as u32,
  327. height_original as u32,
  328. match self.task() {
  329. YOLOTask::Segment => image::imageops::FilterType::CatmullRom,
  330. _ => image::imageops::FilterType::Triangle,
  331. },
  332. );
  333. // crop-mask with bbox
  334. let mut mask_original_cropped = mask_original.into_luma8();
  335. for y in 0..height_original as usize {
  336. for x in 0..width_original as usize {
  337. if x < elem.0.xmin() as usize
  338. || x > elem.0.xmax() as usize
  339. || y < elem.0.ymin() as usize
  340. || y > elem.0.ymax() as usize
  341. {
  342. mask_original_cropped.put_pixel(
  343. x as u32,
  344. y as u32,
  345. image::Luma([0u8]),
  346. );
  347. }
  348. }
  349. }
  350. y_masks.push(mask_original_cropped.into_raw());
  351. }
  352. y_bboxes.push(elem.0);
  353. }
  354. // save each result
  355. let y = YOLOResult {
  356. probs: None,
  357. bboxes: if !y_bboxes.is_empty() {
  358. Some(y_bboxes)
  359. } else {
  360. None
  361. },
  362. keypoints: if !y_kpts.is_empty() {
  363. Some(y_kpts)
  364. } else {
  365. None
  366. },
  367. masks: if !y_masks.is_empty() {
  368. Some(y_masks)
  369. } else {
  370. None
  371. },
  372. };
  373. ys.push(y);
  374. }
  375. Ok(ys)
  376. }
  377. }
  378. pub fn plot_and_save(
  379. &self,
  380. ys: &[YOLOResult],
  381. xs0: &[DynamicImage],
  382. skeletons: Option<&[(usize, usize)]>,
  383. ) {
  384. // check font then load
  385. let font: FontArc = load_font();
  386. for (_idb, (img0, y)) in xs0.iter().zip(ys.iter()).enumerate() {
  387. let mut img = img0.to_rgb8();
  388. // draw for classifier
  389. if let Some(probs) = y.probs() {
  390. for (i, k) in probs.topk(5).iter().enumerate() {
  391. let legend = format!("{} {:.2}%", self.names[k.0], k.1);
  392. let scale = 32;
  393. let legend_size = img.width().max(img.height()) / scale;
  394. let x = img.width() / 20;
  395. let y = img.height() / 20 + i as u32 * legend_size;
  396. imageproc::drawing::draw_text_mut(
  397. &mut img,
  398. image::Rgb([0, 255, 0]),
  399. x as i32,
  400. y as i32,
  401. legend_size as f32,
  402. &font,
  403. &legend,
  404. );
  405. }
  406. }
  407. // draw bboxes & keypoints
  408. if let Some(bboxes) = y.bboxes() {
  409. for (_idx, bbox) in bboxes.iter().enumerate() {
  410. // rect
  411. imageproc::drawing::draw_hollow_rect_mut(
  412. &mut img,
  413. imageproc::rect::Rect::at(bbox.xmin() as i32, bbox.ymin() as i32)
  414. .of_size(bbox.width() as u32, bbox.height() as u32),
  415. image::Rgb(self.color_palette[bbox.id()].into()),
  416. );
  417. // text
  418. let legend = format!("{} {:.2}%", self.names[bbox.id()], bbox.confidence());
  419. let scale = 40;
  420. let legend_size = img.width().max(img.height()) / scale;
  421. imageproc::drawing::draw_text_mut(
  422. &mut img,
  423. image::Rgb(self.color_palette[bbox.id()].into()),
  424. bbox.xmin() as i32,
  425. (bbox.ymin() - legend_size as f32) as i32,
  426. legend_size as f32,
  427. &font,
  428. &legend,
  429. );
  430. }
  431. }
  432. // draw kpts
  433. if let Some(keypoints) = y.keypoints() {
  434. for kpts in keypoints.iter() {
  435. for kpt in kpts.iter() {
  436. // filter
  437. if kpt.confidence() < self.kconf {
  438. continue;
  439. }
  440. // draw point
  441. imageproc::drawing::draw_filled_circle_mut(
  442. &mut img,
  443. (kpt.x() as i32, kpt.y() as i32),
  444. 2,
  445. image::Rgb([0, 255, 0]),
  446. );
  447. }
  448. // draw skeleton if has
  449. if let Some(skeletons) = skeletons {
  450. for &(idx1, idx2) in skeletons.iter() {
  451. let kpt1 = &kpts[idx1];
  452. let kpt2 = &kpts[idx2];
  453. if kpt1.confidence() < self.kconf || kpt2.confidence() < self.kconf {
  454. continue;
  455. }
  456. imageproc::drawing::draw_line_segment_mut(
  457. &mut img,
  458. (kpt1.x(), kpt1.y()),
  459. (kpt2.x(), kpt2.y()),
  460. image::Rgb([233, 14, 57]),
  461. );
  462. }
  463. }
  464. }
  465. }
  466. // draw mask
  467. if let Some(masks) = y.masks() {
  468. for (mask, _bbox) in masks.iter().zip(y.bboxes().unwrap().iter()) {
  469. let mask_nd: ImageBuffer<image::Luma<_>, Vec<u8>> =
  470. match ImageBuffer::from_vec(img.width(), img.height(), mask.to_vec()) {
  471. Some(image) => image,
  472. None => panic!("can not crate image from ndarray"),
  473. };
  474. for _x in 0..img.width() {
  475. for _y in 0..img.height() {
  476. let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_nd, _x, _y);
  477. if mask_p.0[0] > 0 {
  478. let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, _x, _y);
  479. // img_p.0[2] = self.color_palette[bbox.id()].2 / 2;
  480. // img_p.0[1] = self.color_palette[bbox.id()].1 / 2;
  481. // img_p.0[0] = self.color_palette[bbox.id()].0 / 2;
  482. img_p.0[2] /= 2;
  483. img_p.0[1] = 255 - (255 - img_p.0[2]) / 2;
  484. img_p.0[0] /= 2;
  485. imageproc::drawing::Canvas::draw_pixel(&mut img, _x, _y, img_p)
  486. }
  487. }
  488. }
  489. }
  490. }
  491. // mkdir and save
  492. let mut runs = PathBuf::from("runs");
  493. if !runs.exists() {
  494. std::fs::create_dir_all(&runs).unwrap();
  495. }
  496. runs.push(gen_time_string("-"));
  497. let saveout = format!("{}.jpg", runs.to_str().unwrap());
  498. let _ = img.save(saveout);
  499. }
  500. }
  501. pub fn summary(&self) {
  502. println!(
  503. "\nSummary:\n\
  504. > Task: {:?}{}\n\
  505. > EP: {:?} {}\n\
  506. > Dtype: {:?}\n\
  507. > Batch: {} ({}), Height: {} ({}), Width: {} ({})\n\
  508. > nc: {} nk: {}, nm: {}, conf: {}, kconf: {}, iou: {}\n\
  509. ",
  510. self.task(),
  511. match self.engine.author().zip(self.engine.version()) {
  512. Some((author, ver)) => format!(" ({} {})", author, ver),
  513. None => String::from(""),
  514. },
  515. self.engine.ep(),
  516. if let OrtEP::CPU = self.engine.ep() {
  517. ""
  518. } else {
  519. "(May still fall back to CPU)"
  520. },
  521. self.engine.dtype(),
  522. self.batch(),
  523. if self.engine.is_batch_dynamic() {
  524. "Dynamic"
  525. } else {
  526. "Const"
  527. },
  528. self.height(),
  529. if self.engine.is_height_dynamic() {
  530. "Dynamic"
  531. } else {
  532. "Const"
  533. },
  534. self.width(),
  535. if self.engine.is_width_dynamic() {
  536. "Dynamic"
  537. } else {
  538. "Const"
  539. },
  540. self.nc(),
  541. self.nk(),
  542. self.nm(),
  543. self.conf,
  544. self.kconf,
  545. self.iou,
  546. );
  547. }
  548. pub fn engine(&self) -> &OrtBackend {
  549. &self.engine
  550. }
  551. pub fn conf(&self) -> f32 {
  552. self.conf
  553. }
  554. pub fn set_conf(&mut self, val: f32) {
  555. self.conf = val;
  556. }
  557. pub fn conf_mut(&mut self) -> &mut f32 {
  558. &mut self.conf
  559. }
  560. pub fn kconf(&self) -> f32 {
  561. self.kconf
  562. }
  563. pub fn iou(&self) -> f32 {
  564. self.iou
  565. }
  566. pub fn task(&self) -> &YOLOTask {
  567. &self.task
  568. }
  569. pub fn batch(&self) -> u32 {
  570. self.batch
  571. }
  572. pub fn width(&self) -> u32 {
  573. self.width
  574. }
  575. pub fn height(&self) -> u32 {
  576. self.height
  577. }
  578. pub fn nc(&self) -> u32 {
  579. self.nc
  580. }
  581. pub fn nk(&self) -> u32 {
  582. self.nk
  583. }
  584. pub fn nm(&self) -> u32 {
  585. self.nm
  586. }
  587. pub fn names(&self) -> &Vec<String> {
  588. &self.names
  589. }
  590. }
Discard
Tip!

Press p or to see the previous file or, n or to see the next file