1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
- # Ultralytics ๐ AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- import cv2
- import numpy as np
- import onnxruntime as ort
- import torch
- from ultralytics.utils import ASSETS, yaml_load
- from ultralytics.utils.checks import check_requirements, check_yaml
- class RTDETR:
- """RTDETR object detection model class for handling inference and visualization."""
- def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5):
- """
- Initializes the RTDETR object with the specified parameters.
- Args:
- model_path: Path to the ONNX model file.
- img_path: Path to the input image.
- conf_thres: Confidence threshold for object detection.
- iou_thres: IoU threshold for non-maximum suppression
- """
- self.model_path = model_path
- self.img_path = img_path
- self.conf_thres = conf_thres
- self.iou_thres = iou_thres
- # Set up the ONNX runtime session with CUDA and CPU execution providers
- self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
- self.model_input = self.session.get_inputs()
- self.input_width = self.model_input[0].shape[2]
- self.input_height = self.model_input[0].shape[3]
- # Load class names from the COCO dataset YAML file
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
- # Generate a color palette for drawing bounding boxes
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
- def draw_detections(self, box, score, class_id):
- """
- Draws bounding boxes and labels on the input image based on the detected objects.
- Args:
- box: Detected bounding box.
- score: Corresponding detection score.
- class_id: Class ID for the detected object.
- Returns:
- None
- """
- # Extract the coordinates of the bounding box
- x1, y1, x2, y2 = box
- # Retrieve the color for the class ID
- color = self.color_palette[class_id]
- # Draw the bounding box on the image
- cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
- # Create the label text with class name and score
- label = f"{self.classes[class_id]}: {score:.2f}"
- # Calculate the dimensions of the label text
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- # Calculate the position of the label text
- label_x = x1
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
- # Draw a filled rectangle as the background for the label text
- cv2.rectangle(
- self.img,
- (int(label_x), int(label_y - label_height)),
- (int(label_x + label_width), int(label_y + label_height)),
- color,
- cv2.FILLED,
- )
- # Draw the label text on the image
- cv2.putText(
- self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA
- )
- def preprocess(self):
- """
- Preprocesses the input image before performing inference.
- Returns:
- image_data: Preprocessed image data ready for inference.
- """
- # Read the input image using OpenCV
- self.img = cv2.imread(self.img_path)
- # Get the height and width of the input image
- self.img_height, self.img_width = self.img.shape[:2]
- # Convert the image color space from BGR to RGB
- img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
- # Resize the image to match the input shape
- img = cv2.resize(img, (self.input_width, self.input_height))
- # Normalize the image data by dividing it by 255.0
- image_data = np.array(img) / 255.0
- # Transpose the image to have the channel dimension as the first dimension
- image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
- # Expand the dimensions of the image data to match the expected input shape
- image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
- # Return the preprocessed image data
- return image_data
- def bbox_cxcywh_to_xyxy(self, boxes):
- """
- Converts bounding boxes from (center x, center y, width, height) format to (x_min, y_min, x_max, y_max) format.
- Args:
- boxes (numpy.ndarray): An array of shape (N, 4) where each row represents
- a bounding box in (cx, cy, w, h) format.
- Returns:
- numpy.ndarray: An array of shape (N, 4) where each row represents
- a bounding box in (x_min, y_min, x_max, y_max) format.
- """
- # Calculate half width and half height of the bounding boxes
- half_width = boxes[:, 2] / 2
- half_height = boxes[:, 3] / 2
- # Calculate the coordinates of the bounding boxes
- x_min = boxes[:, 0] - half_width
- y_min = boxes[:, 1] - half_height
- x_max = boxes[:, 0] + half_width
- y_max = boxes[:, 1] + half_height
- # Return the bounding boxes in (x_min, y_min, x_max, y_max) format
- return np.column_stack((x_min, y_min, x_max, y_max))
- def postprocess(self, model_output):
- """
- Postprocesses the model output to extract detections and draw them on the input image.
- Args:
- model_output: Output of the model inference.
- Returns:
- np.array: Annotated image with detections.
- """
- # Squeeze the model output to remove unnecessary dimensions
- outputs = np.squeeze(model_output[0])
- # Extract bounding boxes and scores from the model output
- boxes = outputs[:, :4]
- scores = outputs[:, 4:]
- # Get the class labels and scores for each detection
- labels = np.argmax(scores, axis=1)
- scores = np.max(scores, axis=1)
- # Apply confidence threshold to filter out low-confidence detections
- mask = scores > self.conf_thres
- boxes, scores, labels = boxes[mask], scores[mask], labels[mask]
- # Convert bounding boxes to (x_min, y_min, x_max, y_max) format
- boxes = self.bbox_cxcywh_to_xyxy(boxes)
- # Scale bounding boxes to match the original image dimensions
- boxes[:, 0::2] *= self.img_width
- boxes[:, 1::2] *= self.img_height
- # Draw detections on the image
- for box, score, label in zip(boxes, scores, labels):
- self.draw_detections(box, score, label)
- # Return the annotated image
- return self.img
- def main(self):
- """
- Executes the detection on the input image using the ONNX model.
- Returns:
- np.array: Output image with annotations.
- """
- # Preprocess the image for model input
- image_data = self.preprocess()
- # Run the model inference
- model_output = self.session.run(None, {self.model_input[0].name: image_data})
- # Process and return the model output
- return self.postprocess(model_output)
- if __name__ == "__main__":
- # Set up argument parser for command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.")
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.")
- parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.")
- parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.")
- args = parser.parse_args()
- # Check for dependencies and set up ONNX runtime
- check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime")
- # Create the detector instance with specified parameters
- detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres)
- # Perform detection and get the output image
- output_image = detection.main()
- # Display the annotated output image
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
- cv2.imshow("Output", output_image)
- cv2.waitKey(0)
|