1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
- # Ultralytics YOLO ๐, AGPL-3.0 license
- import math
- import cv2
- from ultralytics.solutions.solutions import BaseSolution
- from ultralytics.utils.plotting import Annotator, colors
- class DistanceCalculation(BaseSolution):
- """
- A class to calculate distance between two objects in a real-time video stream based on their tracks.
- This class extends BaseSolution to provide functionality for selecting objects and calculating the distance
- between them in a video stream using YOLO object detection and tracking.
- Attributes:
- left_mouse_count (int): Counter for left mouse button clicks.
- selected_boxes (Dict[int, List[float]]): Dictionary to store selected bounding boxes and their track IDs.
- annotator (Annotator): An instance of the Annotator class for drawing on the image.
- boxes (List[List[float]]): List of bounding boxes for detected objects.
- track_ids (List[int]): List of track IDs for detected objects.
- clss (List[int]): List of class indices for detected objects.
- names (List[str]): List of class names that the model can detect.
- centroids (List[List[int]]): List to store centroids of selected bounding boxes.
- Methods:
- mouse_event_for_distance: Handles mouse events for selecting objects in the video stream.
- calculate: Processes video frames and calculates the distance between selected objects.
- Examples:
- >>> distance_calc = DistanceCalculation()
- >>> frame = cv2.imread("frame.jpg")
- >>> processed_frame = distance_calc.calculate(frame)
- >>> cv2.imshow("Distance Calculation", processed_frame)
- >>> cv2.waitKey(0)
- """
- def __init__(self, **kwargs):
- """Initializes the DistanceCalculation class for measuring object distances in video streams."""
- super().__init__(**kwargs)
- # Mouse event information
- self.left_mouse_count = 0
- self.selected_boxes = {}
- self.centroids = [] # Initialize empty list to store centroids
- def mouse_event_for_distance(self, event, x, y, flags, param):
- """
- Handles mouse events to select regions in a real-time video stream for distance calculation.
- Args:
- event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN).
- x (int): X-coordinate of the mouse pointer.
- y (int): Y-coordinate of the mouse pointer.
- flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY).
- param (Dict): Additional parameters passed to the function.
- Examples:
- >>> # Assuming 'dc' is an instance of DistanceCalculation
- >>> cv2.setMouseCallback("window_name", dc.mouse_event_for_distance)
- """
- if event == cv2.EVENT_LBUTTONDOWN:
- self.left_mouse_count += 1
- if self.left_mouse_count <= 2:
- for box, track_id in zip(self.boxes, self.track_ids):
- if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
- self.selected_boxes[track_id] = box
- elif event == cv2.EVENT_RBUTTONDOWN:
- self.selected_boxes = {}
- self.left_mouse_count = 0
- def calculate(self, im0):
- """
- Processes a video frame and calculates the distance between two selected bounding boxes.
- This method extracts tracks from the input frame, annotates bounding boxes, and calculates the distance
- between two user-selected objects if they have been chosen.
- Args:
- im0 (numpy.ndarray): The input image frame to process.
- Returns:
- (numpy.ndarray): The processed image frame with annotations and distance calculations.
- Examples:
- >>> import numpy as np
- >>> from ultralytics.solutions import DistanceCalculation
- >>> dc = DistanceCalculation()
- >>> frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
- >>> processed_frame = dc.calculate(frame)
- """
- self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
- self.extract_tracks(im0) # Extract tracks
- # Iterate over bounding boxes, track ids and classes index
- for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
- self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
- if len(self.selected_boxes) == 2:
- for trk_id in self.selected_boxes.keys():
- if trk_id == track_id:
- self.selected_boxes[track_id] = box
- if len(self.selected_boxes) == 2:
- # Store user selected boxes in centroids list
- self.centroids.extend(
- [[int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)] for box in self.selected_boxes.values()]
- )
- # Calculate pixels distance
- pixels_distance = math.sqrt(
- (self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2
- )
- self.annotator.plot_distance_and_line(pixels_distance, self.centroids)
- self.centroids = []
- self.display_output(im0) # display output with base class function
- cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance)
- return im0 # return output image for more usage
|