1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
- # Ultralytics YOLO ๐, AGPL-3.0 license
- from itertools import cycle
- import cv2
- import matplotlib.pyplot as plt
- import numpy as np
- from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
- from matplotlib.figure import Figure
- from ultralytics.solutions.solutions import BaseSolution # Import a parent class
- class Analytics(BaseSolution):
- """
- A class for creating and updating various types of charts for visual analytics.
- This class extends BaseSolution to provide functionality for generating line, bar, pie, and area charts
- based on object detection and tracking data.
- Attributes:
- type (str): The type of analytics chart to generate ('line', 'bar', 'pie', or 'area').
- x_label (str): Label for the x-axis.
- y_label (str): Label for the y-axis.
- bg_color (str): Background color of the chart frame.
- fg_color (str): Foreground color of the chart frame.
- title (str): Title of the chart window.
- max_points (int): Maximum number of data points to display on the chart.
- fontsize (int): Font size for text display.
- color_cycle (cycle): Cyclic iterator for chart colors.
- total_counts (int): Total count of detected objects (used for line charts).
- clswise_count (Dict[str, int]): Dictionary for class-wise object counts.
- fig (Figure): Matplotlib figure object for the chart.
- ax (Axes): Matplotlib axes object for the chart.
- canvas (FigureCanvas): Canvas for rendering the chart.
- Methods:
- process_data: Processes image data and updates the chart.
- update_graph: Updates the chart with new data points.
- Examples:
- >>> analytics = Analytics(analytics_type="line")
- >>> frame = cv2.imread("image.jpg")
- >>> processed_frame = analytics.process_data(frame, frame_number=1)
- >>> cv2.imshow("Analytics", processed_frame)
- """
- def __init__(self, **kwargs):
- """Initialize Analytics class with various chart types for visual data representation."""
- super().__init__(**kwargs)
- self.type = self.CFG["analytics_type"] # extract type of analytics
- self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#"
- self.y_label = "Total Counts"
- # Predefined data
- self.bg_color = "#F3F3F3" # background color of frame
- self.fg_color = "#111E68" # foreground color of frame
- self.title = "Ultralytics Solutions" # window name
- self.max_points = 45 # maximum points to be drawn on window
- self.fontsize = 25 # text font size for display
- figsize = (19.2, 10.8) # Set output image size 1920 * 1080
- self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
- self.total_counts = 0 # count variable for storing total counts i.e. for line
- self.clswise_count = {} # dictionary for class-wise counts
- # Ensure line and area chart
- if self.type in {"line", "area"}:
- self.lines = {}
- self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
- self.canvas = FigureCanvas(self.fig) # Set common axis properties
- self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
- if self.type == "line":
- (self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width)
- elif self.type in {"bar", "pie"}:
- # Initialize bar or pie plot
- self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
- self.canvas = FigureCanvas(self.fig) # Set common axis properties
- self.ax.set_facecolor(self.bg_color)
- self.color_mapping = {}
- if self.type == "pie": # Ensure pie chart is circular
- self.ax.axis("equal")
- def process_data(self, im0, frame_number):
- """
- Processes image data and runs object tracking to update analytics charts.
- Args:
- im0 (np.ndarray): Input image for processing.
- frame_number (int): Video frame number for plotting the data.
- Returns:
- (np.ndarray): Processed image with updated analytics chart.
- Raises:
- ModuleNotFoundError: If an unsupported chart type is specified.
- Examples:
- >>> analytics = Analytics(analytics_type="line")
- >>> frame = np.zeros((480, 640, 3), dtype=np.uint8)
- >>> processed_frame = analytics.process_data(frame, frame_number=1)
- """
- self.extract_tracks(im0) # Extract tracks
- if self.type == "line":
- for _ in self.boxes:
- self.total_counts += 1
- im0 = self.update_graph(frame_number=frame_number)
- self.total_counts = 0
- elif self.type in {"pie", "bar", "area"}:
- self.clswise_count = {}
- for box, cls in zip(self.boxes, self.clss):
- if self.names[int(cls)] in self.clswise_count:
- self.clswise_count[self.names[int(cls)]] += 1
- else:
- self.clswise_count[self.names[int(cls)]] = 1
- im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type)
- else:
- raise ModuleNotFoundError(f"{self.type} chart is not supported โ")
- return im0
- def update_graph(self, frame_number, count_dict=None, plot="line"):
- """
- Updates the graph with new data for single or multiple classes.
- Args:
- frame_number (int): The current frame number.
- count_dict (Dict[str, int] | None): Dictionary with class names as keys and counts as values for multiple
- classes. If None, updates a single line graph.
- plot (str): Type of the plot. Options are 'line', 'bar', 'pie', or 'area'.
- Returns:
- (np.ndarray): Updated image containing the graph.
- Examples:
- >>> analytics = Analytics()
- >>> frame_number = 10
- >>> count_dict = {"person": 5, "car": 3}
- >>> updated_image = analytics.update_graph(frame_number, count_dict, plot="bar")
- """
- if count_dict is None:
- # Single line update
- x_data = np.append(self.line.get_xdata(), float(frame_number))
- y_data = np.append(self.line.get_ydata(), float(self.total_counts))
- if len(x_data) > self.max_points:
- x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :]
- self.line.set_data(x_data, y_data)
- self.line.set_label("Counts")
- self.line.set_color("#7b0068") # Pink color
- self.line.set_marker("*")
- self.line.set_markersize(self.line_width * 5)
- else:
- labels = list(count_dict.keys())
- counts = list(count_dict.values())
- if plot == "area":
- color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
- # Multiple lines or area update
- x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([])
- y_data_dict = {key: np.array([]) for key in count_dict.keys()}
- if self.ax.lines:
- for line, key in zip(self.ax.lines, count_dict.keys()):
- y_data_dict[key] = line.get_ydata()
- x_data = np.append(x_data, float(frame_number))
- max_length = len(x_data)
- for key in count_dict.keys():
- y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key]))
- if len(y_data_dict[key]) < max_length:
- y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])))
- if len(x_data) > self.max_points:
- x_data = x_data[1:]
- for key in count_dict.keys():
- y_data_dict[key] = y_data_dict[key][1:]
- self.ax.clear()
- for key, y_data in y_data_dict.items():
- color = next(color_cycle)
- self.ax.fill_between(x_data, y_data, color=color, alpha=0.7)
- self.ax.plot(
- x_data,
- y_data,
- color=color,
- linewidth=self.line_width,
- marker="o",
- markersize=self.line_width * 5,
- label=f"{key} Data Points",
- )
- if plot == "bar":
- self.ax.clear() # clear bar data
- for label in labels: # Map labels to colors
- if label not in self.color_mapping:
- self.color_mapping[label] = next(self.color_cycle)
- colors = [self.color_mapping[label] for label in labels]
- bars = self.ax.bar(labels, counts, color=colors)
- for bar, count in zip(bars, counts):
- self.ax.text(
- bar.get_x() + bar.get_width() / 2,
- bar.get_height(),
- str(count),
- ha="center",
- va="bottom",
- color=self.fg_color,
- )
- # Create the legend using labels from the bars
- for bar, label in zip(bars, labels):
- bar.set_label(label) # Assign label to each bar
- self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color)
- if plot == "pie":
- total = sum(counts)
- percentages = [size / total * 100 for size in counts]
- start_angle = 90
- self.ax.clear()
- # Create pie chart and create legend labels with percentages
- wedges, autotexts = self.ax.pie(
- counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None
- )
- legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
- # Assign the legend using the wedges and manually created labels
- self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
- self.fig.subplots_adjust(left=0.1, right=0.75) # Adjust layout to fit the legend
- # Common plot settings
- self.ax.set_facecolor("#f0f0f0") # Set to light gray or any other color you like
- self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
- self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
- self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)
- # Add and format legend
- legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color)
- for text in legend.get_texts():
- text.set_color(self.fg_color)
- # Redraw graph, update view, capture, and display the updated plot
- self.ax.relim()
- self.ax.autoscale_view()
- self.canvas.draw()
- im0 = np.array(self.canvas.renderer.buffer_rgba())
- im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
- self.display_output(im0)
- return im0 # Return the image
|