1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
|
- <!DOCTYPE html>
- <html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
- <head>
- <meta charset="utf-8" />
- <meta name="generator" content="pandoc" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
- <title>Vectors And Spaces</title>
- <style type="text/css">
- code{white-space: pre-wrap;}
- span.smallcaps{font-variant: small-caps;}
- span.underline{text-decoration: underline;}
- div.column{display: inline-block; vertical-align: top; width: 50%;}
- </style>
- <style type="text/css">
- a.sourceLine { display: inline-block; line-height: 1.25; }
- a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
- a.sourceLine:empty { height: 1.2em; }
- .sourceCode { overflow: visible; }
- code.sourceCode { white-space: pre; position: relative; }
- div.sourceCode { margin: 1em 0; }
- pre.sourceCode { margin: 0; }
- @media screen {
- div.sourceCode { overflow: auto; }
- }
- @media print {
- code.sourceCode { white-space: pre-wrap; }
- a.sourceLine { text-indent: -1em; padding-left: 1em; }
- }
- pre.numberSource a.sourceLine
- { position: relative; left: -4em; }
- pre.numberSource a.sourceLine::before
- { content: attr(title);
- position: relative; left: -1em; text-align: right; vertical-align: baseline;
- border: none; pointer-events: all; display: inline-block;
- -webkit-touch-callout: none; -webkit-user-select: none;
- -khtml-user-select: none; -moz-user-select: none;
- -ms-user-select: none; user-select: none;
- padding: 0 4px; width: 4em;
- color: #aaaaaa;
- }
- pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
- div.sourceCode
- { }
- @media screen {
- a.sourceLine::before { text-decoration: underline; }
- }
- code span.al { color: #ff0000; font-weight: bold; } /* Alert */
- code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
- code span.at { color: #7d9029; } /* Attribute */
- code span.bn { color: #40a070; } /* BaseN */
- code span.bu { } /* BuiltIn */
- code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
- code span.ch { color: #4070a0; } /* Char */
- code span.cn { color: #880000; } /* Constant */
- code span.co { color: #60a0b0; font-style: italic; } /* Comment */
- code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
- code span.do { color: #ba2121; font-style: italic; } /* Documentation */
- code span.dt { color: #902000; } /* DataType */
- code span.dv { color: #40a070; } /* DecVal */
- code span.er { color: #ff0000; font-weight: bold; } /* Error */
- code span.ex { } /* Extension */
- code span.fl { color: #40a070; } /* Float */
- code span.fu { color: #06287e; } /* Function */
- code span.im { } /* Import */
- code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
- code span.kw { color: #007020; font-weight: bold; } /* Keyword */
- code span.op { color: #666666; } /* Operator */
- code span.ot { color: #007020; } /* Other */
- code span.pp { color: #bc7a00; } /* Preprocessor */
- code span.sc { color: #4070a0; } /* SpecialChar */
- code span.ss { color: #bb6688; } /* SpecialString */
- code span.st { color: #4070a0; } /* String */
- code span.va { color: #19177c; } /* Variable */
- code span.vs { color: #4070a0; } /* VerbatimString */
- code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
- </style>
- <link rel="stylesheet" href="style.css" />
- </head>
- <body>
- <h1 id="vectors-and-spaces">Vectors And Spaces</h1>
- <blockquote>
- <p>by Thom Ives, Ph.D. using Python applied to lectures of Sal Khan from Khan Academy</p>
- </blockquote>
- <figure>
- <img src="Khan_LA_Plus_Python_MT.png" alt="Khan and Python are MORE TOGETHER" /><figcaption>Khan and Python are MORE TOGETHER</figcaption>
- </figure>
- <p>In case you’ve never heard me say it, “I love Sal Khan’s teaching!” He is a gift to America and the world! When I need to review something in Linear Algebra, I usually turn to his videos and Khan Academy materials first. Well, a while back, a group of people wanted to learn Linear Algebra from me. I said,</p>
- <blockquote>
- <p>“Learn it from the best! And then I will help you learn how to use Python for linear algebraic operations and linear algebraic visualizations to help you learn it AND Python better!”</p>
- </blockquote>
- <p>Well, now I want to create a repo for this and share it with you as I grow it. I am eager to hear from you where I can make things more clear and helpful. This is a work in progress.</p>
- <p>Here are the links we will cover below. Khan Academy Section www.khanacademy.org/math/linear-algebra/vectors-and-spaces 1. Vector Intro For Linear Algebra www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/vector-introduction-linear-algebra?modal=1 1. Real Coordinate Spaces www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/real-coordinate-spaces?modal=1 1. Adding Vectors Algebraically & Graphically www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/adding-vectors 1. Multiplying A Vector By A Scalar www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/multiplying-vector-by-scalar 1. Vector Examples www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/linear-algebra-vector-examples?modal=1 1. Unit Vectors Introduction www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/intro-unit-vector-notation?modal=1 1. Parametric Representations Of Lines www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/linear-algebra-parametric-representations-of-lines?modal=1</p>
- <p>Vectors have direction and magnitude.</p>
- <p>It does NOT matter where they start from.</p>
- <p>What are some vectors that you know about and what is their direction?</p>
- <p>$ = [5 ] $ where <span class="math inline"><em>î</em></span> is a unit vector in the x direction.</p>
- <div class="sourceCode" id="cb1"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb1-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb1-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb1-3" title="3"></a>
- <a class="sourceLine" id="cb1-4" title="4">plt.rc_context({</a>
- <a class="sourceLine" id="cb1-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb1-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb1-7" title="7"></a>
- <a class="sourceLine" id="cb1-8" title="8">plt.plot([<span class="dv">2</span>, <span class="fl">2.001</span>],[<span class="dv">1</span>, <span class="fl">1.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb1-9" title="9">plt.plot([<span class="fl">8.999</span>, <span class="dv">9</span>],[<span class="fl">3.999</span>, <span class="dv">4</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb1-10" title="10"></a>
- <a class="sourceLine" id="cb1-11" title="11">vi <span class="op">=</span> <span class="dv">5</span></a>
- <a class="sourceLine" id="cb1-12" title="12">vj <span class="op">=</span> <span class="dv">0</span></a>
- <a class="sourceLine" id="cb1-13" title="13">plt.arrow(<span class="dv">3</span>, <span class="dv">2</span>, vi, vj, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb1-14" title="14">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_6_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>$ = [3 ;; 4] $ where <span class="math inline"><em>ĵ</em></span> is a unit vector in the y direction.</p>
- <p>What is the magnitude of $ $?</p>
- <p>It is $ = = = = 5$</p>
- <div class="sourceCode" id="cb2"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb2-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb2-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb2-3" title="3"></a>
- <a class="sourceLine" id="cb2-4" title="4">plt.rc_context({</a>
- <a class="sourceLine" id="cb2-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb2-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb2-7" title="7"></a>
- <a class="sourceLine" id="cb2-8" title="8">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb2-9" title="9">plt.plot([<span class="fl">7.999</span>, <span class="dv">8</span>],[<span class="fl">7.999</span>, <span class="dv">8</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb2-10" title="10"></a>
- <a class="sourceLine" id="cb2-11" title="11">vi <span class="op">=</span> <span class="dv">3</span></a>
- <a class="sourceLine" id="cb2-12" title="12">vj <span class="op">=</span> <span class="dv">4</span></a>
- <a class="sourceLine" id="cb2-13" title="13">plt.arrow(<span class="dv">1</span>, <span class="dv">2</span>, vi, vj, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb2-14" title="14">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_8_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="adding-two-vectors-of-like-kind">Adding Two Vectors Of Like Kind</h2>
- <p>$ = [1 ;; 2], ;;; = [2 ;; 2] $</p>
- <p>It is $ = + = [(1+2) + (2+2)] = [3 + 4] $</p>
- <p>What is the magnitude of $ $?</p>
- <p>It is $ = + = = = = 5$</p>
- <div class="sourceCode" id="cb3"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb3-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb3-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb3-3" title="3"></a>
- <a class="sourceLine" id="cb3-4" title="4">plt.rc_context({ <span class="co"># Only needed for some dark modes</span></a>
- <a class="sourceLine" id="cb3-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb3-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb3-7" title="7"></a>
- <a class="sourceLine" id="cb3-8" title="8"><span class="co"># Create a pallet plot for vectors</span></a>
- <a class="sourceLine" id="cb3-9" title="9">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb3-10" title="10">plt.xlim([<span class="dv">0</span>, <span class="dv">5</span>])<span class="op">;</span> plt.ylim([<span class="dv">0</span>, <span class="dv">7</span>])</a>
- <a class="sourceLine" id="cb3-11" title="11"></a>
- <a class="sourceLine" id="cb3-12" title="12">v1i <span class="op">=</span> <span class="dv">1</span><span class="op">;</span> v1j <span class="op">=</span> <span class="dv">2</span><span class="op">;</span> v2i <span class="op">=</span> <span class="dv">2</span><span class="op">;</span> v2j <span class="op">=</span> <span class="dv">2</span></a>
- <a class="sourceLine" id="cb3-13" title="13"></a>
- <a class="sourceLine" id="cb3-14" title="14">plt.arrow(<span class="dv">1</span>, <span class="dv">2</span>, v1i, v1j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb3-15" title="15"> ec <span class="op">=</span><span class="st">'green'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb3-16" title="16">plt.arrow(<span class="dv">2</span>, <span class="dv">4</span>, v2i, v2j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb3-17" title="17"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb3-18" title="18"></a>
- <a class="sourceLine" id="cb3-19" title="19">v3i <span class="op">=</span> v1i <span class="op">+</span> v2i<span class="op">;</span> v3j <span class="op">=</span> v1j <span class="op">+</span> v2j</a>
- <a class="sourceLine" id="cb3-20" title="20">v3_mag <span class="op">=</span> np.linalg.norm([<span class="dv">3</span>, <span class="dv">4</span>])</a>
- <a class="sourceLine" id="cb3-21" title="21"></a>
- <a class="sourceLine" id="cb3-22" title="22">stuff <span class="op">=</span> <span class="vs">r'The magnitude of $\vec</span><span class="sc">{v_3}</span><span class="vs">$'</span> <span class="op">+</span> <span class="ss">f' is </span><span class="sc">{</span>v3_mag<span class="sc">}</span><span class="ss">'</span></a>
- <a class="sourceLine" id="cb3-23" title="23">plt.text(<span class="dv">1</span>, <span class="dv">1</span>, stuff, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb3-24" title="24">plt.arrow(<span class="dv">1</span>, <span class="dv">2</span>, v3i, v3j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb3-25" title="25"> ec <span class="op">=</span><span class="st">'blue'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb3-26" title="26">plt.grid()</a>
- <a class="sourceLine" id="cb3-27" title="27">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_10_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>How do you find the magnitude of a vector in NumPy?</p>
- <p>You use norm - short for Euclidean Norm.</p>
- <div class="sourceCode" id="cb4"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb4-1" title="1">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb4-2" title="2">v2 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb4-3" title="3">v3 <span class="op">=</span> v1 <span class="op">+</span> v2</a>
- <a class="sourceLine" id="cb4-4" title="4"><span class="bu">print</span>(v3)</a>
- <a class="sourceLine" id="cb4-5" title="5">v3_mag <span class="op">=</span> np.linalg.norm(v3)</a>
- <a class="sourceLine" id="cb4-6" title="6"><span class="bu">print</span>(v3_mag)</a></code></pre></div>
- <pre><code>[3 4]
- 5.0</code></pre>
- <p>How do we scale vectors in NumPy as Sal Khan showed us?</p>
- <div class="sourceCode" id="cb6"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb6-1" title="1">v4 <span class="op">=</span> <span class="dv">4</span><span class="op">*</span>v1</a>
- <a class="sourceLine" id="cb6-2" title="2">v5 <span class="op">=</span> <span class="dv">4</span><span class="op">*</span>v2</a>
- <a class="sourceLine" id="cb6-3" title="3"><span class="bu">print</span>(v4)</a>
- <a class="sourceLine" id="cb6-4" title="4"><span class="bu">print</span>(v5)</a></code></pre></div>
- <pre><code>[8 8]
- [4 8]</code></pre>
- <p>Now we can simply add our scaled vectors.</p>
- <div class="sourceCode" id="cb8"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb8-1" title="1">v6 <span class="op">=</span> v4 <span class="op">+</span> v5</a>
- <a class="sourceLine" id="cb8-2" title="2"><span class="bu">print</span>(v6)</a>
- <a class="sourceLine" id="cb8-3" title="3">v6_mag <span class="op">=</span> np.linalg.norm(v6)</a>
- <a class="sourceLine" id="cb8-4" title="4"><span class="bu">print</span>(v6_mag)</a></code></pre></div>
- <pre><code>[12 16]
- 20.0</code></pre>
- <p>Can I find the unit vectors for all our vectors above? YES! Divide the vectors by their norms!</p>
- <div class="sourceCode" id="cb10"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb10-1" title="1">v1_unit <span class="op">=</span> v1 <span class="op">/</span> np.linalg.norm(v1)</a>
- <a class="sourceLine" id="cb10-2" title="2"><span class="bu">print</span>(<span class="ss">f'Unit vector of v1 is </span><span class="sc">{</span>v1_unit<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb10-3" title="3"></a>
- <a class="sourceLine" id="cb10-4" title="4">v2_unit <span class="op">=</span> v2 <span class="op">/</span> np.linalg.norm(v2)</a>
- <a class="sourceLine" id="cb10-5" title="5"><span class="bu">print</span>(<span class="ss">f'Unit vector of v2 is </span><span class="sc">{</span>v2_unit<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb10-6" title="6"></a>
- <a class="sourceLine" id="cb10-7" title="7">v3_unit <span class="op">=</span> v3 <span class="op">/</span> v3_mag</a>
- <a class="sourceLine" id="cb10-8" title="8"><span class="bu">print</span>(<span class="ss">f'Unit vector of v3 is </span><span class="sc">{</span>v3_unit<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb10-9" title="9"></a>
- <a class="sourceLine" id="cb10-10" title="10">v4_unit <span class="op">=</span> v4 <span class="op">/</span> np.linalg.norm(v4)</a>
- <a class="sourceLine" id="cb10-11" title="11"><span class="bu">print</span>(<span class="ss">f'Unit vector of v4 is </span><span class="sc">{</span>v4_unit<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb10-12" title="12"></a>
- <a class="sourceLine" id="cb10-13" title="13">v5_unit <span class="op">=</span> v5 <span class="op">/</span> np.linalg.norm(v5)</a>
- <a class="sourceLine" id="cb10-14" title="14"><span class="bu">print</span>(<span class="ss">f'Unit vector of v5 is </span><span class="sc">{</span>v5_unit<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb10-15" title="15"></a>
- <a class="sourceLine" id="cb10-16" title="16">v6_unit <span class="op">=</span> v6 <span class="op">/</span> np.linalg.norm(v6)</a>
- <a class="sourceLine" id="cb10-17" title="17"><span class="bu">print</span>(<span class="ss">f'Unit vector of v6 is </span><span class="sc">{</span>v6_unit<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>Unit vector of v1 is [0.70710678 0.70710678]
- Unit vector of v2 is [0.4472136 0.89442719]
- Unit vector of v3 is [0.6 0.8]
- Unit vector of v4 is [0.70710678 0.70710678]
- Unit vector of v5 is [0.4472136 0.89442719]
- Unit vector of v6 is [0.6 0.8]</code></pre>
- <p>Why are they called unit vectors? If you find their norm, their norms will ALWAYS equal 1 IF they are truly unit vectors.</p>
- <div class="sourceCode" id="cb12"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb12-1" title="1"><span class="bu">print</span>(<span class="ss">f'The magnitude of v1_unit is </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(v1_unit), <span class="dv">2</span>)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb12-2" title="2"><span class="bu">print</span>(<span class="ss">f'The magnitude of v2_unit is </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(v2_unit), <span class="dv">2</span>)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb12-3" title="3"><span class="bu">print</span>(<span class="ss">f'The magnitude of v3_unit is </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(v3_unit), <span class="dv">2</span>)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb12-4" title="4"><span class="bu">print</span>(<span class="ss">f'The magnitude of v4_unit is </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(v4_unit), <span class="dv">2</span>)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb12-5" title="5"><span class="bu">print</span>(<span class="ss">f'The magnitude of v5_unit is </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(v5_unit), <span class="dv">2</span>)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb12-6" title="6"><span class="bu">print</span>(<span class="ss">f'The magnitude of v6_unit is </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(v6_unit), <span class="dv">2</span>)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>The magnitude of v1_unit is 1.0
- The magnitude of v2_unit is 1.0
- The magnitude of v3_unit is 1.0
- The magnitude of v4_unit is 1.0
- The magnitude of v5_unit is 1.0
- The magnitude of v6_unit is 1.0</code></pre>
- <p>IF you multiply your unit vectors by a magnitude or scalar, you will get a vector in the same direction with a different magnitude.</p>
- <h1 id="linear-combinations-and-span">Linear Combinations And Span</h1>
- <p><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/linear-combinations/v/linear-combinations-and-span">Khan Academy Section</a></p>
- <p> <a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/linear-combinations/v/linear-combinations-and-span?modal=1">Video for Linear Combinations And Span</a></p>
- <p>$ = [1 ;; 2], ;;; = [2 ;; 2] $ are independent.</p>
- <p>We can say that some $ = c_1 + c_2 $</p>
- <p>How much space could be spanned by using many different values for <span class="math inline"><em>c</em><sub>1</sub></span> and <span class="math inline"><em>c</em><sub>2</sub></span> ?</p>
- <p>It would be all real values in 2 dimensional space.</p>
- <p>In other words, $ ;; ;; ℝ^2 $.</p>
- <p>The same can be true for independent vectors in $ ℝ^3 $.</p>
- <p>$ = [1 ;; 2 ;; 3], ;;; = [2 ;; 2 ;; 1] $ are independent.</p>
- <p>We can say that some $ = c_1 + c_2 $</p>
- <p>How much space could be spanned by using many different values for <span class="math inline"><em>c</em><sub>1</sub></span> and <span class="math inline"><em>c</em><sub>2</sub></span> ?</p>
- <p>It would be all real values in 3 dimensional space.</p>
- <p>In other words, $ ;; ;; ℝ^3 $.</p>
- <p>Etcetera for more than 3 dimensions.</p>
- <div class="sourceCode" id="cb14"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb14-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb14-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb14-3" title="3"></a>
- <a class="sourceLine" id="cb14-4" title="4">c1 <span class="op">=</span> <span class="dv">3</span><span class="op">;</span> c2 <span class="op">=</span> <span class="dv">4</span></a>
- <a class="sourceLine" id="cb14-5" title="5">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">2</span>])<span class="op">;</span> v2 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb14-6" title="6">v3 <span class="op">=</span> c1<span class="op">*</span>v1 <span class="op">+</span> c2<span class="op">*</span>v2</a>
- <a class="sourceLine" id="cb14-7" title="7"><span class="bu">print</span>(v3)</a>
- <a class="sourceLine" id="cb14-8" title="8">v3_mag <span class="op">=</span> <span class="bu">round</span>(np.linalg.norm(v3), <span class="dv">2</span>)</a>
- <a class="sourceLine" id="cb14-9" title="9"></a>
- <a class="sourceLine" id="cb14-10" title="10">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb14-11" title="11">plt.xlim([<span class="op">-</span><span class="dv">20</span>, <span class="dv">20</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">20</span>, <span class="dv">20</span>])</a>
- <a class="sourceLine" id="cb14-12" title="12">plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, v3[<span class="dv">0</span>], v3[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb14-13" title="13"></a>
- <a class="sourceLine" id="cb14-14" title="14">stuff <span class="op">=</span> <span class="vs">r'The magnitude of $\vec</span><span class="sc">{v_3}</span><span class="vs">$'</span> <span class="op">+</span> <span class="ss">f' is </span><span class="sc">{</span>v3_mag<span class="sc">}</span><span class="ss">'</span></a>
- <a class="sourceLine" id="cb14-15" title="15">plt.title(stuff, color<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb14-16" title="16">plt.show()<span class="op">;</span></a></code></pre></div>
- <pre><code>[10 14]</code></pre>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_23_1.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="the-span-of-linearly-combined-independent-vectors">The Span of Linearly Combined Independent Vectors</h2>
- <p>$ V = Span(, , , ) c_1 , c_2 , , c_3 ; ; c_i ℝ $</p>
- <div class="sourceCode" id="cb16"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb16-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb16-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb16-3" title="3"></a>
- <a class="sourceLine" id="cb16-4" title="4">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">2</span>])<span class="op">;</span> v2 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb16-5" title="5"></a>
- <a class="sourceLine" id="cb16-6" title="6">finite_span <span class="op">=</span> <span class="dv">10</span></a>
- <a class="sourceLine" id="cb16-7" title="7"><span class="cf">for</span> c1 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb16-8" title="8"> <span class="cf">for</span> c2 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb16-9" title="9"> v3 <span class="op">=</span> c1<span class="op">*</span>v1 <span class="op">+</span> c2<span class="op">*</span>v2</a>
- <a class="sourceLine" id="cb16-10" title="10"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb16-11" title="11"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, v3[<span class="dv">0</span>], v3[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb16-12" title="12"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb16-13" title="13"></a>
- <a class="sourceLine" id="cb16-14" title="14">plt.xlim([<span class="op">-</span><span class="dv">20</span>, <span class="dv">20</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">20</span>, <span class="dv">20</span>])</a>
- <a class="sourceLine" id="cb16-15" title="15">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_25_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="the-span-of-linearly-combined-dependent-vectors">The Span of Linearly Combined Dependent Vectors</h2>
- <div class="sourceCode" id="cb17"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb17-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb17-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb17-3" title="3"></a>
- <a class="sourceLine" id="cb17-4" title="4"></a>
- <a class="sourceLine" id="cb17-5" title="5">finite_span <span class="op">=</span> <span class="dv">5</span></a>
- <a class="sourceLine" id="cb17-6" title="6">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">2</span>])<span class="op">;</span> v2 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">1</span>])</a>
- <a class="sourceLine" id="cb17-7" title="7"></a>
- <a class="sourceLine" id="cb17-8" title="8"><span class="cf">for</span> c1 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span <span class="op">+</span> <span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb17-9" title="9"> <span class="cf">for</span> c2 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span <span class="op">+</span> <span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb17-10" title="10"> v3 <span class="op">=</span> c1<span class="op">*</span>v1 <span class="op">+</span> c2<span class="op">*</span>v2</a>
- <a class="sourceLine" id="cb17-11" title="11"></a>
- <a class="sourceLine" id="cb17-12" title="12"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb17-13" title="13"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, v3[<span class="dv">0</span>], v3[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb17-14" title="14"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb17-15" title="15"></a>
- <a class="sourceLine" id="cb17-16" title="16">plt.xlim([<span class="op">-</span><span class="dv">20</span>, <span class="dv">20</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">20</span>, <span class="dv">20</span>])</a>
- <a class="sourceLine" id="cb17-17" title="17">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_27_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h1 id="linear-dependence-and-independence">Linear Dependence And Independence</h1>
- <h3 id="linear-dependence-and-independence-1"><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/linear-independence/v/linear-algebra-introduction-to-linear-independence">Linear Dependence And Independence</a></h3>
- <ul>
- <li><p><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/linear-independence/v/linear-algebra-introduction-to-linear-independence">Introduction To Linear Independence</a></p></li>
- <li><p><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/linear-independence/v/more-on-linear-independence?modal=1">More On Linear Independence</a></p></li>
- <li><p><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/linear-independence/v/span-and-linear-independence-example?modal=1">Span And Linear Independence Example</a></p></li>
- </ul>
- <h2 id="overview">Overview</h2>
- <p>Linear Independence - No collinearity between two or more vectors (i.e. features) Linear Dependence - Collinearity is present between two or more vectors (i.e. features)</p>
- <h2 id="linear-dependence">Linear Dependence</h2>
- <div class="sourceCode" id="cb18"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb18-1" title="1">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb18-2" title="2">v2 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">1</span>])</a>
- <a class="sourceLine" id="cb18-3" title="3"></a>
- <a class="sourceLine" id="cb18-4" title="4"><span class="bu">print</span>(v1)</a>
- <a class="sourceLine" id="cb18-5" title="5"><span class="bu">print</span>(v2)</a></code></pre></div>
- <pre><code>[2 2]
- [1 1]</code></pre>
- <div class="sourceCode" id="cb20"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb20-1" title="1"><span class="bu">print</span>(v1)</a>
- <a class="sourceLine" id="cb20-2" title="2"><span class="bu">print</span>(<span class="dv">2</span><span class="op">*</span>v2)</a></code></pre></div>
- <pre><code>[2 2]
- [2 2]</code></pre>
- <p>This is easy to see by inspection, but what if we have many MANY dimensions? We need a mathematical way / a code way / a programmatic way to check for dependence or independence.</p>
- <div class="sourceCode" id="cb22"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb22-1" title="1">u_v1 <span class="op">=</span> v1 <span class="op">/</span> np.linalg.norm(v1)</a>
- <a class="sourceLine" id="cb22-2" title="2">u_v2 <span class="op">=</span> v2 <span class="op">/</span> np.linalg.norm(v2)</a>
- <a class="sourceLine" id="cb22-3" title="3"></a>
- <a class="sourceLine" id="cb22-4" title="4"><span class="bu">print</span>(u_v1)</a>
- <a class="sourceLine" id="cb22-5" title="5"><span class="bu">print</span>(u_v2)</a>
- <a class="sourceLine" id="cb22-6" title="6"></a>
- <a class="sourceLine" id="cb22-7" title="7"><span class="cf">if</span> np.array_equal(u_v1, u_v2):</a>
- <a class="sourceLine" id="cb22-8" title="8"> <span class="bu">print</span>(<span class="st">'The vectors are dependent'</span>)</a>
- <a class="sourceLine" id="cb22-9" title="9"><span class="cf">else</span>:</a>
- <a class="sourceLine" id="cb22-10" title="10"> <span class="bu">print</span>(<span class="st">'The vectors are independent'</span>)</a></code></pre></div>
- <pre><code>[0.70710678 0.70710678]
- [0.70710678 0.70710678]
- The vectors are dependent</code></pre>
- <h2 id="linear-independence">Linear Independence</h2>
- <div class="sourceCode" id="cb24"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb24-1" title="1">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb24-2" title="2">v2 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">2</span>])</a>
- <a class="sourceLine" id="cb24-3" title="3"></a>
- <a class="sourceLine" id="cb24-4" title="4"><span class="bu">print</span>(v1)</a>
- <a class="sourceLine" id="cb24-5" title="5"><span class="bu">print</span>(v2)</a></code></pre></div>
- <pre><code>[2 2]
- [1 2]</code></pre>
- <div class="sourceCode" id="cb26"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb26-1" title="1">u_v1 <span class="op">=</span> v1 <span class="op">/</span> np.linalg.norm(v1)</a>
- <a class="sourceLine" id="cb26-2" title="2">u_v2 <span class="op">=</span> v2 <span class="op">/</span> np.linalg.norm(v2)</a>
- <a class="sourceLine" id="cb26-3" title="3"></a>
- <a class="sourceLine" id="cb26-4" title="4"><span class="bu">print</span>(u_v1)</a>
- <a class="sourceLine" id="cb26-5" title="5"><span class="bu">print</span>(u_v2)</a>
- <a class="sourceLine" id="cb26-6" title="6"></a>
- <a class="sourceLine" id="cb26-7" title="7"><span class="cf">if</span> np.array_equal(u_v1, u_v2):</a>
- <a class="sourceLine" id="cb26-8" title="8"> <span class="bu">print</span>(<span class="st">'The vectors are dependent'</span>)</a>
- <a class="sourceLine" id="cb26-9" title="9"><span class="cf">else</span>:</a>
- <a class="sourceLine" id="cb26-10" title="10"> <span class="bu">print</span>(<span class="st">'The vectors are independent'</span>)</a></code></pre></div>
- <pre><code>[0.70710678 0.70710678]
- [0.4472136 0.89442719]
- The vectors are independent</code></pre>
- <h2 id="general-check-for-independence">General Check For Independence</h2>
- <p>$ = [1 ;; 2], ;;; = [2 ;; 2] $</p>
- <p>If there is <span class="math inline"><em>c</em><sub>1</sub> ≠ 0</span> for <span class="math inline"><em>c</em><sub>1</sub></span> being any real number</p>
- <p>and / or some</p>
- <p>$ c_2 0 $ for <span class="math inline"><em>c</em><sub>2</sub></span> being any real number</p>
- <p>to satisfy the equation</p>
- <p>$ 0 = c_1 + c_2 $</p>
- <p>then, the vectors are dependent.</p>
- <p>If $ c_1 $ and $ c_2 $ MUST BE zero to satisfy the equation above,</p>
- <p>then the vectors are independent.</p>
- <h2 id="visualization-of-above-principles">Visualization Of Above Principles</h2>
- <h2 id="visualizing-linear-dependence">Visualizing Linear Dependence</h2>
- <div class="sourceCode" id="cb28"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb28-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb28-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb28-3" title="3"></a>
- <a class="sourceLine" id="cb28-4" title="4">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb28-5" title="5">plt.xlim([<span class="dv">0</span>, <span class="dv">7</span>])<span class="op">;</span> plt.ylim([<span class="dv">0</span>, <span class="dv">7</span>])</a>
- <a class="sourceLine" id="cb28-6" title="6"></a>
- <a class="sourceLine" id="cb28-7" title="7">v1i <span class="op">=</span> <span class="dv">1</span><span class="op">;</span> v1j <span class="op">=</span> <span class="dv">1</span></a>
- <a class="sourceLine" id="cb28-8" title="8">v2i <span class="op">=</span> <span class="dv">2</span><span class="op">;</span> v2j <span class="op">=</span> <span class="dv">2</span></a>
- <a class="sourceLine" id="cb28-9" title="9"></a>
- <a class="sourceLine" id="cb28-10" title="10">plt.arrow(<span class="dv">2</span>, <span class="dv">2</span>, v1i, v1j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb28-11" title="11">plt.arrow(<span class="dv">2</span>, <span class="dv">2</span>, v2i, v2j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'red'</span>)</a>
- <a class="sourceLine" id="cb28-12" title="12"></a>
- <a class="sourceLine" id="cb28-13" title="13">stuff <span class="op">=</span> <span class="vs">r'Visualizing $\vec</span><span class="sc">{v_1}</span><span class="vs">$ and $\vec</span><span class="sc">{v_2}</span><span class="vs">$'</span></a>
- <a class="sourceLine" id="cb28-14" title="14">plt.title(stuff, color<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb28-15" title="15">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_41_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="visualizing-linear-independence">Visualizing Linear Independence</h2>
- <div class="sourceCode" id="cb29"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb29-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb29-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb29-3" title="3"></a>
- <a class="sourceLine" id="cb29-4" title="4">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb29-5" title="5">plt.xlim([<span class="dv">0</span>, <span class="dv">7</span>])<span class="op">;</span> plt.ylim([<span class="dv">0</span>, <span class="dv">7</span>])</a>
- <a class="sourceLine" id="cb29-6" title="6"></a>
- <a class="sourceLine" id="cb29-7" title="7">v1i <span class="op">=</span> <span class="dv">1</span><span class="op">;</span> v1j <span class="op">=</span> <span class="dv">2</span></a>
- <a class="sourceLine" id="cb29-8" title="8">v2i <span class="op">=</span> <span class="dv">2</span><span class="op">;</span> v2j <span class="op">=</span> <span class="dv">2</span></a>
- <a class="sourceLine" id="cb29-9" title="9"></a>
- <a class="sourceLine" id="cb29-10" title="10">plt.arrow(<span class="dv">2</span>, <span class="dv">2</span>, v1i, v1j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb29-11" title="11">plt.arrow(<span class="dv">2</span>, <span class="dv">2</span>, v2i, v2j, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'red'</span>)</a>
- <a class="sourceLine" id="cb29-12" title="12"></a>
- <a class="sourceLine" id="cb29-13" title="13">stuff <span class="op">=</span> <span class="vs">r'Visualizing $\vec</span><span class="sc">{v_1}</span><span class="vs">$ and $\vec</span><span class="sc">{v_2}</span><span class="vs">$'</span></a>
- <a class="sourceLine" id="cb29-14" title="14">plt.title(stuff, color<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb29-15" title="15">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_43_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="takeaway">Takeaway</h2>
- <p>With increased dimensionality comes new information.</p>
- <h1 id="compact-review-linear-dependence-independence-visually-via-unit-vectorization">Compact Review<br>Linear Dependence & Independence:<br>Visually & Via Unit Vectorization</h1>
- <div class="sourceCode" id="cb30"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb30-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb30-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb30-3" title="3"></a>
- <a class="sourceLine" id="cb30-4" title="4">plt.figure(figsize<span class="op">=</span>(<span class="dv">7</span>, <span class="dv">4</span>))</a>
- <a class="sourceLine" id="cb30-5" title="5">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb30-6" title="6">plt.xlim([<span class="dv">0</span>, <span class="dv">7</span>])<span class="op">;</span> plt.ylim([<span class="dv">0</span>, <span class="dv">4</span>])</a>
- <a class="sourceLine" id="cb30-7" title="7"></a>
- <a class="sourceLine" id="cb30-8" title="8">v1 <span class="op">=</span> [<span class="dv">1</span>, <span class="dv">1</span>]<span class="op">;</span> v2 <span class="op">=</span> [<span class="dv">2</span>, <span class="dv">2</span>]<span class="op">;</span> v3 <span class="op">=</span> [<span class="dv">1</span>, <span class="dv">2</span>]<span class="op">;</span> v4 <span class="op">=</span> [<span class="dv">2</span>, <span class="dv">2</span>]</a>
- <a class="sourceLine" id="cb30-9" title="9"></a>
- <a class="sourceLine" id="cb30-10" title="10">u_v1 <span class="op">=</span> v1 <span class="op">/</span> np.linalg.norm(v1)<span class="op">;</span> u_v2 <span class="op">=</span> v2 <span class="op">/</span> np.linalg.norm(v2)</a>
- <a class="sourceLine" id="cb30-11" title="11">u_v3 <span class="op">=</span> v3 <span class="op">/</span> np.linalg.norm(v3)<span class="op">;</span> u_v4 <span class="op">=</span> v4 <span class="op">/</span> np.linalg.norm(v4)</a>
- <a class="sourceLine" id="cb30-12" title="12"></a>
- <a class="sourceLine" id="cb30-13" title="13"><span class="bu">print</span>(<span class="ss">f'Vectors 1 and 2 are independent: </span><span class="sc">{</span><span class="kw">not</span> <span class="sc">np.</span>array_equal(u_v1, u_v2)<span class="sc">}</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb30-14" title="14"><span class="bu">print</span>(<span class="ss">f'Vectors 3 and 4 are independent: </span><span class="sc">{</span><span class="kw">not</span> <span class="sc">np.</span>array_equal(u_v3, u_v4)<span class="sc">}</span><span class="ch">\n</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb30-15" title="15"></a>
- <a class="sourceLine" id="cb30-16" title="16">plt.arrow(<span class="dv">1</span>, <span class="dv">1</span>, v1[<span class="dv">0</span>], v1[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb30-17" title="17">plt.arrow(<span class="dv">1</span>, <span class="dv">1</span>, v2[<span class="dv">0</span>], v2[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'red'</span>)</a>
- <a class="sourceLine" id="cb30-18" title="18">plt.arrow(<span class="dv">4</span>, <span class="dv">1</span>, v3[<span class="dv">0</span>], v3[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb30-19" title="19">plt.arrow(<span class="dv">4</span>, <span class="dv">1</span>, v4[<span class="dv">0</span>], v4[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'red'</span>)</a>
- <a class="sourceLine" id="cb30-20" title="20"></a>
- <a class="sourceLine" id="cb30-21" title="21">stuff <span class="op">=</span> <span class="vs">r'$\vec</span><span class="sc">{v_1}</span><span class="vs">$ and $\vec</span><span class="sc">{v_2}</span><span class="vs">$ are Dependent'</span></a>
- <a class="sourceLine" id="cb30-22" title="22">stuff <span class="op">+=</span> <span class="vs">r' ... $\vec</span><span class="sc">{v_3}</span><span class="vs">$ and $\vec</span><span class="sc">{v_4}</span><span class="vs">$ are Independent'</span></a>
- <a class="sourceLine" id="cb30-23" title="23">plt.title(stuff, color<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb30-24" title="24"></a>
- <a class="sourceLine" id="cb30-25" title="25">plt.show()<span class="op">;</span></a></code></pre></div>
- <pre><code>Vectors 1 and 2 are independent: False
- Vectors 3 and 4 are independent: True</code></pre>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_46_1.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h1 id="subspaces-and-the-basis-for-a-subspace">Subspaces And The Basis For A Subspace</h1>
- <p><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/subspace-basis/v/linear-subspaces">Subspaces And The Basis For A Subspace</a> * <a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/subspace-basis/v/linear-subspaces?modal=1">Linear Subspaces</a> * <a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/subspace-basis/v/linear-algebra-basis-of-a-subspace?modal=1">Basis Of A Subspace</a></p>
- <p>Linear Algebra and the Data Sciences are subsets of STEM * Sometimes it takes learning several lectures or sessions or chapters of STEM material before the light turns on in your mind - be patient * It’s perfectly normal if or when you fall in love with this stuff to want to watch Sal’s lectures again, OR read a linear algebra textbook multiple times, and to do the same with multiple linear algebra textbooks OR materials. * Branches of math and science important to the data sciences: * Algebra * Linear Algebra * Trigonometry * Statistics (a science that uses the math of probability) * The Calculus</p>
- <h2 id="how-to-determine-if-some-v-which-is-a-subset-of-ℝn-is-also-a-valid-subspace-of-ℝn">How To Determine IF Some <span class="math inline"><em>V</em></span>, Which Is A Subset Of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span> Is Also A Valid Subspace of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span></h2>
- <p>Some <span class="math inline"><em>V</em></span> is a subset of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span>.</p>
- <p>$ $ is a valid subspace of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span> IF the following three statements are true:</p>
- <ol type="1">
- <li>$ $ contains the zero vector for n dimensions … $ =
- <p>$, <br> which means all vectors in <span class="math inline"><em>V⃗</em></span> are linearly independent of each other and no vectors in <span class="math inline"><em>V⃗</em></span> are linear combinations of each other.</p></li>
- <li><p>If <span class="math inline"><em>x⃗</em></span> is in <span class="math inline"><em>V⃗</em></span>, then any <span class="math inline"><em>c</em><em>x⃗</em></span> is also in <span class="math inline"><em>V⃗</em></span> where <span class="math inline"><em>c</em></span> is any scalar value.</p></li>
- <li><p>If $ $ is in $ $ and if $ $ is in $ $, then $ + $ is in $ $</p></li>
- </ol>
- <p>This all means that if the set of vectors <span class="math inline"><em>V</em></span> is closed under multiplication and addition and contains the zero vector, it is a valid subspace of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span>.</p>
- <h2 id="a-super-simple-example-of-a-valid-subspace-of-ℝ3">A Super Simple Example Of A Valid Subspace Of $ ℝ^3 $</h2>
- <p><span class="math inline">$\vec{V} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$</span> is a subset of <span class="math inline"><em>ℝ</em><sup>3</sup></span>.</p>
- <p>Is <span class="math inline"><em>V⃗</em></span> a valid subspace of <span class="math inline"><em>ℝ</em><sup>3</sup></span>?</p>
- <ol type="1">
- <li><p><span class="math inline"><em>V⃗</em></span> does contain the zero vector for 3 dimensions.</p></li>
- <li><p>Any <span class="math inline"><em>c</em><em>V⃗</em></span> is also in <span class="math inline"><em>V⃗</em></span> where <span class="math inline"><em>c</em></span> is any scalar value.</p></li>
- <li><p><span class="math inline"><em>V⃗</em> + <em>V⃗</em> = <em>V⃗</em></span></p></li>
- </ol>
- <p>Thus <span class="math inline"><em>V⃗</em></span> is a valid subspace of <span class="math inline"><em>ℝ</em><sup>3</sup></span>.</p>
- <p>Even though this is trivially simple subspace, it is still valid subspace.</p>
- <h2 id="a-simple-example-of-an-invalid-subspace-of-ℝ2">A Simple Example Of An Invalid Subspace Of <span class="math inline"><em>ℝ</em><sup>2</sup></span></h2>
- <p><span class="math inline">$S = \begin{Bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} in\; ℝ^2 \mid x_1 \ge 0 \end{Bmatrix}$</span></p>
- <p>Is <span class="math inline"><em>S</em></span> a valid subspace of <span class="math inline"><em>ℝ</em><sup>2</sup></span>?</p>
- <ol type="1">
- <li><p><span class="math inline"><em>S</em></span> does contain the zero vector for 2 dimensions.</p></li>
- <li><p>NOT all <span class="math inline">$c \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$</span> are in <span class="math inline"><em>S</em></span> where <span class="math inline"><em>c</em></span> is any scalar value, so <span class="math inline"><em>S</em></span> is not closed under multiplication.</p></li>
- <li><p><span class="math inline"><em>a⃗</em></span> is in <span class="math inline"><em>S</em></span> and <span class="math inline"><em>b⃗</em></span> is in <span class="math inline"><em>S</em></span> and <span class="math inline"><em>a⃗</em> + <em>b⃗</em></span> is in <span class="math inline"><em>S</em></span>, so <span class="math inline"><em>S</em></span> is closed under addition.</p></li>
- </ol>
- <p>Thus <span class="math inline"><em>S</em></span> is NOT a valid subspace of <span class="math inline"><em>ℝ</em><sup>2</sup></span>, because it is not closed for multiplication (rule 2).</p>
- <p>Let’s illustrate this with Python, NumPy, and MatPlotLib</p>
- <div class="sourceCode" id="cb32"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb32-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb32-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb32-3" title="3"></a>
- <a class="sourceLine" id="cb32-4" title="4">plt.rc_context({</a>
- <a class="sourceLine" id="cb32-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb32-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb32-7" title="7"></a>
- <a class="sourceLine" id="cb32-8" title="8">x_list <span class="op">=</span> []</a>
- <a class="sourceLine" id="cb32-9" title="9">finite_span <span class="op">=</span> <span class="dv">20</span></a>
- <a class="sourceLine" id="cb32-10" title="10">lim <span class="op">=</span> <span class="dv">30</span></a>
- <a class="sourceLine" id="cb32-11" title="11">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb32-12" title="12"><span class="cf">for</span> x1 <span class="kw">in</span> <span class="bu">range</span>(<span class="dv">0</span>, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb32-13" title="13"> <span class="cf">for</span> x2 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb32-14" title="14"> x <span class="op">=</span> np.array([x1, x2])</a>
- <a class="sourceLine" id="cb32-15" title="15"> x_list.append(x)</a>
- <a class="sourceLine" id="cb32-16" title="16"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb32-17" title="17"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb32-18" title="18"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb32-19" title="19"></a>
- <a class="sourceLine" id="cb32-20" title="20">plt.xlim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb32-21" title="21">plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb32-22" title="22">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_53_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <div class="sourceCode" id="cb33"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb33-1" title="1">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb33-2" title="2"><span class="cf">for</span> x <span class="kw">in</span> x_list:</a>
- <a class="sourceLine" id="cb33-3" title="3"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb33-4" title="4"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb33-5" title="5"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb33-6" title="6"></a>
- <a class="sourceLine" id="cb33-7" title="7">plt.xlim([<span class="op">-</span>lim, lim])<span class="op">;</span> plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb33-8" title="8">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_54_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <div class="sourceCode" id="cb34"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb34-1" title="1"><span class="co"># is [0 0] in x_list, and x_list in a python list of numpy vectors / arrays</span></a>
- <a class="sourceLine" id="cb34-2" title="2"><span class="co"># We want a python list of python arrays so we can use the "in" logic</span></a>
- <a class="sourceLine" id="cb34-3" title="3">py_list_of_py_lists <span class="op">=</span> [x.tolist() <span class="cf">for</span> x <span class="kw">in</span> x_list]</a>
- <a class="sourceLine" id="cb34-4" title="4"><span class="bu">print</span>([<span class="dv">0</span>, <span class="dv">0</span>] <span class="kw">in</span> py_list_of_py_lists)</a></code></pre></div>
- <pre><code>True</code></pre>
- <div class="sourceCode" id="cb36"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb36-1" title="1"><span class="im">import</span> random</a>
- <a class="sourceLine" id="cb36-2" title="2"></a>
- <a class="sourceLine" id="cb36-3" title="3">list_1 <span class="op">=</span> random.sample(x_list, <span class="dv">1</span>)[<span class="dv">0</span>]</a>
- <a class="sourceLine" id="cb36-4" title="4">list_2 <span class="op">=</span> random.sample(x_list, <span class="dv">1</span>)[<span class="dv">0</span>]</a>
- <a class="sourceLine" id="cb36-5" title="5"><span class="bu">print</span>(list_1, list_2)</a>
- <a class="sourceLine" id="cb36-6" title="6">sum_of_any_two_lists <span class="op">=</span> list_1 <span class="op">+</span> list_2</a>
- <a class="sourceLine" id="cb36-7" title="7"><span class="bu">print</span>(sum_of_any_two_lists)</a>
- <a class="sourceLine" id="cb36-8" title="8"><span class="bu">print</span>(sum_of_any_two_lists.tolist() <span class="kw">in</span> py_list_of_py_lists)</a></code></pre></div>
- <pre><code>[10 13] [ 5 -16]
- [15 -3]
- True</code></pre>
- <div class="sourceCode" id="cb38"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb38-1" title="1">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb38-2" title="2"><span class="cf">for</span> x <span class="kw">in</span> x_list:</a>
- <a class="sourceLine" id="cb38-3" title="3"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb38-4" title="4"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb38-5" title="5"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb38-6" title="6"></a>
- <a class="sourceLine" id="cb38-7" title="7">bool_list <span class="op">=</span> []</a>
- <a class="sourceLine" id="cb38-8" title="8">x <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">1</span>])</a>
- <a class="sourceLine" id="cb38-9" title="9"><span class="cf">for</span> c <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span><span class="dv">10</span>, <span class="dv">10</span><span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb38-10" title="10"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb38-11" title="11"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, c<span class="op">*</span>x[<span class="dv">0</span>], c<span class="op">*</span>x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb38-12" title="12"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'red'</span>)</a>
- <a class="sourceLine" id="cb38-13" title="13"> curr_vec <span class="op">=</span> c<span class="op">*</span>x</a>
- <a class="sourceLine" id="cb38-14" title="14"> bool_list.append(curr_vec.tolist() <span class="kw">in</span> py_list_of_py_lists)</a>
- <a class="sourceLine" id="cb38-15" title="15"></a>
- <a class="sourceLine" id="cb38-16" title="16"><span class="bu">print</span>(bool_list)</a>
- <a class="sourceLine" id="cb38-17" title="17">plt.xlim([<span class="op">-</span>lim, lim])<span class="op">;</span> plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb38-18" title="18">plt.show()<span class="op">;</span></a></code></pre></div>
- <pre><code>[False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, True, True, True, True, True, True]</code></pre>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_57_1.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="a-very-general-example-for-a-span-in-ℝn">A VERY General Example For A Span In <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span></h2>
- <p>Note, that in this example, we do not even know the number of dimensions <span class="math inline"><em>n</em></span>.</p>
- <p>Is $ U = Span(, , )$ a valid subspace of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span><br> > where each of the vectors <span class="math inline">$\vec{V_1}, \vec{V_2}, \vec{V_3}$</span> have dimension <span class="math inline"><em>n</em></span>?</p>
- <ol type="1">
- <li><p>$ 0 + 0 + 0 = $</p></li>
- <li><p>$ = c_1 + c_2 + c_3 $ <br> $ a = a c_1 + a c_2 + a c_3 $ <br> $ a = c_4 + c_5 + c_6 $ <br> all of these are in the <span class="math inline"><em>S</em><em>p</em><em>a</em><em>n</em></span> of <span class="math inline"><em>U</em></span>, which is our subspace, so U is closed under multiplication.</p></li>
- <li><p>Let’s define another vector <br> <span class="math inline">$\vec{y} = d_1 \vec{V_1} + d_2 \vec{V_2} + d_3 \vec{V_3}$</span><br> <span class="math inline">$\vec{x} + \vec{y} = (c_1 + d_1) \vec{V_1} + (c_2 + d_2) \vec{V_2} + (c_3 + d_3) \vec{V_3}$</span><br> but <span class="math inline"><em>x⃗</em> + <em>y⃗</em></span> is just a linear combination of <span class="math inline">$\vec{V_1}, \vec{V_2}, \vec{V_3}$</span>, which would be in the span of <span class="math inline"><em>U</em></span>, so U is closed under addition.</p></li>
- </ol>
- <p>Thus, <span class="math inline"><em>U</em></span> is a valid subspace of <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span></p>
- <h2 id="a-simple-example-of-a-valid-subspace-in-ℝ2">A Simple Example Of A Valid Subspace in <span class="math inline"><em>ℝ</em><sup>2</sup></span></h2>
- <p>Is <span class="math inline">$U = Span \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}$</span> a valid subspace of <span class="math inline"><em>ℝ</em><sup>2</sup></span> ?</p>
- <ol type="1">
- <li>First, $ 0
- =
- <p>$, so this rule is valid.</p></li>
- <li>Any $ = c
- =
- $ <br> and all $
- <p>$ would be in <span class="math inline"><em>U</em></span>, so U is closed under multiplication.</p></li>
- <li><p>Some other vector <span class="math inline">$\vec{y} = d \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} d \\ d \end{bmatrix}$</span> would be in <span class="math inline"><em>U</em></span> by the previous rule, <br> and <span class="math inline">$\vec{x} + \vec{y} = \begin{bmatrix} c+d \\ c+d \end{bmatrix}$</span>,<br> which is just a linear combination of <span class="math inline">$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$</span> and would thus be in <span class="math inline"><em>U</em></span>, so <span class="math inline"><em>U</em></span> is closed under addition.</p></li>
- </ol>
- <p>Thus, <span class="math inline">$U = Span \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}$</span> IS a valid subspace of <span class="math inline"><em>ℝ</em><sup>2</sup></span></p>
- <p>Let’s illustrate this with Python, NumPy, and MatPlotLib</p>
- <div class="sourceCode" id="cb40"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb40-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb40-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb40-3" title="3"></a>
- <a class="sourceLine" id="cb40-4" title="4">plt.rc_context({</a>
- <a class="sourceLine" id="cb40-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb40-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb40-7" title="7"></a>
- <a class="sourceLine" id="cb40-8" title="8">x_list <span class="op">=</span> []</a>
- <a class="sourceLine" id="cb40-9" title="9">finite_span <span class="op">=</span> <span class="dv">20</span></a>
- <a class="sourceLine" id="cb40-10" title="10">lim <span class="op">=</span> <span class="dv">30</span></a>
- <a class="sourceLine" id="cb40-11" title="11">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb40-12" title="12">x <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">1</span>])</a>
- <a class="sourceLine" id="cb40-13" title="13"><span class="cf">for</span> c <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb40-14" title="14"> x_list.append(c <span class="op">*</span> x)</a>
- <a class="sourceLine" id="cb40-15" title="15"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb40-16" title="16"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, c<span class="op">*</span>x[<span class="dv">0</span>], c<span class="op">*</span>x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb40-17" title="17"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb40-18" title="18"></a>
- <a class="sourceLine" id="cb40-19" title="19">plt.xlim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb40-20" title="20">plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb40-21" title="21">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_60_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <div class="sourceCode" id="cb41"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb41-1" title="1">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb41-2" title="2"><span class="cf">for</span> x <span class="kw">in</span> x_list:</a>
- <a class="sourceLine" id="cb41-3" title="3"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb41-4" title="4"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb41-5" title="5"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb41-6" title="6"></a>
- <a class="sourceLine" id="cb41-7" title="7">plt.xlim([<span class="op">-</span>lim, lim])<span class="op">;</span> plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb41-8" title="8">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_61_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <div class="sourceCode" id="cb42"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb42-1" title="1"><span class="co"># is [0 0] in x_list, and x_list in a python list of numpy vectors / arrays</span></a>
- <a class="sourceLine" id="cb42-2" title="2"><span class="co"># We want a python list of python arrays so we can use the "in" logic</span></a>
- <a class="sourceLine" id="cb42-3" title="3">py_list_of_py_lists <span class="op">=</span> [x.tolist() <span class="cf">for</span> x <span class="kw">in</span> x_list]</a>
- <a class="sourceLine" id="cb42-4" title="4"><span class="bu">print</span>([<span class="dv">0</span>, <span class="dv">0</span>] <span class="kw">in</span> py_list_of_py_lists)</a></code></pre></div>
- <pre><code>True</code></pre>
- <div class="sourceCode" id="cb44"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb44-1" title="1"><span class="im">import</span> random</a>
- <a class="sourceLine" id="cb44-2" title="2"></a>
- <a class="sourceLine" id="cb44-3" title="3">list_1 <span class="op">=</span> random.sample(x_list, <span class="dv">1</span>)[<span class="dv">0</span>]</a>
- <a class="sourceLine" id="cb44-4" title="4">list_2 <span class="op">=</span> random.sample(x_list, <span class="dv">1</span>)[<span class="dv">0</span>]</a>
- <a class="sourceLine" id="cb44-5" title="5"><span class="bu">print</span>(list_1, list_2)</a>
- <a class="sourceLine" id="cb44-6" title="6">sum_of_any_two_lists <span class="op">=</span> list_1 <span class="op">+</span> list_2</a>
- <a class="sourceLine" id="cb44-7" title="7"><span class="bu">print</span>(sum_of_any_two_lists)</a>
- <a class="sourceLine" id="cb44-8" title="8"><span class="bu">print</span>(sum_of_any_two_lists.tolist() <span class="kw">in</span> py_list_of_py_lists)</a></code></pre></div>
- <pre><code>[-4 -4] [14 14]
- [10 10]
- True</code></pre>
- <div class="sourceCode" id="cb46"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb46-1" title="1">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb46-2" title="2"><span class="cf">for</span> x <span class="kw">in</span> x_list:</a>
- <a class="sourceLine" id="cb46-3" title="3"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb46-4" title="4"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb46-5" title="5"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb46-6" title="6"></a>
- <a class="sourceLine" id="cb46-7" title="7">bool_list <span class="op">=</span> []</a>
- <a class="sourceLine" id="cb46-8" title="8">x <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">1</span>])</a>
- <a class="sourceLine" id="cb46-9" title="9"><span class="cf">for</span> c <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span><span class="dv">10</span>, <span class="dv">10</span><span class="op">+</span><span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb46-10" title="10"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb46-11" title="11"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, c<span class="op">*</span>x[<span class="dv">0</span>], c<span class="op">*</span>x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb46-12" title="12"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'red'</span>)</a>
- <a class="sourceLine" id="cb46-13" title="13"> curr_vec <span class="op">=</span> c<span class="op">*</span>x</a>
- <a class="sourceLine" id="cb46-14" title="14"> bool_list.append(curr_vec.tolist() <span class="kw">in</span> py_list_of_py_lists)</a>
- <a class="sourceLine" id="cb46-15" title="15"></a>
- <a class="sourceLine" id="cb46-16" title="16"><span class="bu">print</span>(bool_list)</a>
- <a class="sourceLine" id="cb46-17" title="17">plt.xlim([<span class="op">-</span>lim, lim])<span class="op">;</span> plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb46-18" title="18">plt.show()<span class="op">;</span></a></code></pre></div>
- <pre><code>[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]</code></pre>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_64_1.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="the-basis-for-a-subspace-is-a-set-of-linearly-independent-vectors">The Basis For A Subspace Is A Set Of Linearly Independent Vectors</h2>
- <p>Let’s say that $ V = Span(, , , )$ is a subspace of some <span class="math inline"><em>ℝ</em><sup><em>n</em></sup></span><br> > where each of the vectors <span class="math inline">$\vec{V_1}, \vec{V_2}, \dots, \vec{V_m}$</span> are linearly independent <span class="math inline">∴</span> no vectors in <span class="math inline"><em>V</em></span> are linear combinations of other vectors in <span class="math inline"><em>V</em></span>.</p>
- <p>Then, if <span class="math inline">$S = {\vec{V_1}, \vec{V_2}, \dots, \vec{V_m}}$</span>, <span class="math inline"><em>S</em></span> is a <strong><em>basis</em></strong> for <span class="math inline"><em>V</em></span>.</p>
- <p>However, if <span class="math inline">$T = {\vec{V_1}, \vec{V_2}, \dots, \vec{V_m}, \vec{V_s}}$</span>, and <span class="math inline">$\vec{V_s} = \vec{V_1} + \vec{V_2}$</span>, we can say that <span class="math inline"><em>S</em><em>p</em><em>a</em><em>n</em>(<em>T</em>) = <em>V</em></span>, but <span class="math inline"><em>T</em></span> is linearly dependent, and thus <span class="math inline"><em>T</em></span> cannot be a basis for <span class="math inline"><em>V</em></span>. Thus, <span class="math inline">$\vec{V_s}$</span> is redundant.</p>
- <p>Thus a basis is the minimum set of vectors that spans the subspace.</p>
- <h2 id="an-example-of-basis-of-a-subspace">An Example Of Basis Of A Subspace</h2>
- <p><span class="math inline">$S = \begin{Bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 7 \\ 0 \end{bmatrix} \end{Bmatrix}$</span>. Is the Span of <span class="math inline"><em>S</em></span> a basis for <span class="math inline"><em>ℝ</em><sup>2</sup></span> ? Yes!</p>
- <p>Please note that <span class="math inline"><em>S</em></span> is not the only basis for <span class="math inline"><em>ℝ</em><sup>2</sup></span>.</p>
- <p>See Sal’s lecture for how to prove it algebraically. But note too that the two vectors are independent. One of them cannot be defined by terms of the other by scaling one to match the other.</p>
- <p>Apply the rules that we covered above.</p>
- <p>Let’s illustrate below with some code reused and modified from above. Remember, we have to <strong><em>imagine</em></strong> how the space with <span class="math inline"><em>c</em><sub><em>i</em></sub> ∈ <em>ℝ</em></span>. We are only using a finite set of <span class="math inline"><em>c</em><sub><em>i</em></sub></span>.</p>
- <div class="sourceCode" id="cb48"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb48-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb48-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb48-3" title="3"></a>
- <a class="sourceLine" id="cb48-4" title="4">v1 <span class="op">=</span> np.array([<span class="dv">2</span>, <span class="dv">3</span>])<span class="op">;</span> v2 <span class="op">=</span> np.array([<span class="dv">7</span>, <span class="dv">0</span>])</a>
- <a class="sourceLine" id="cb48-5" title="5"></a>
- <a class="sourceLine" id="cb48-6" title="6">finite_span <span class="op">=</span> <span class="dv">20</span></a>
- <a class="sourceLine" id="cb48-7" title="7">lim <span class="op">=</span> <span class="dv">70</span></a>
- <a class="sourceLine" id="cb48-8" title="8">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb48-9" title="9"><span class="cf">for</span> c1 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb48-10" title="10"> <span class="cf">for</span> c2 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb48-11" title="11"> v3 <span class="op">=</span> c1<span class="op">*</span>v1 <span class="op">+</span> c2<span class="op">*</span>v2</a>
- <a class="sourceLine" id="cb48-12" title="12"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb48-13" title="13"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, v3[<span class="dv">0</span>], v3[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb48-14" title="14"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb48-15" title="15"></a>
- <a class="sourceLine" id="cb48-16" title="16">plt.xlim([<span class="op">-</span><span class="dv">3</span><span class="op">*</span>lim, <span class="dv">3</span><span class="op">*</span>lim])<span class="op">;</span> plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb48-17" title="17">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_67_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="another-example-of-a-basis-of-a-subspace-ℝ2">Another Example Of A Basis Of A Subspace <span class="math inline"><em>ℝ</em><sup>2</sup></span></h2>
- <p><span class="math inline">$T = \begin{Bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{Bmatrix}$</span>. Is the Span of <span class="math inline"><em>T</em></span> a basis for <span class="math inline"><em>ℝ</em><sup>2</sup></span> ? Yes.</p>
- <p>Apply the rules that we covered above.</p>
- <p>See Sal’s lecture for how to prove it algebraically.</p>
- <p>Let’s illustrate again below with some code reused and modified from above.</p>
- <div class="sourceCode" id="cb49"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb49-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb49-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb49-3" title="3"></a>
- <a class="sourceLine" id="cb49-4" title="4">plt.rc_context({</a>
- <a class="sourceLine" id="cb49-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb49-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb49-7" title="7"></a>
- <a class="sourceLine" id="cb49-8" title="8">v1 <span class="op">=</span> np.array([<span class="dv">1</span>, <span class="dv">0</span>])<span class="op">;</span> v2 <span class="op">=</span> np.array([<span class="dv">0</span>, <span class="dv">1</span>])</a>
- <a class="sourceLine" id="cb49-9" title="9"><span class="bu">print</span>(v1)</a>
- <a class="sourceLine" id="cb49-10" title="10"><span class="bu">print</span>(v2)</a>
- <a class="sourceLine" id="cb49-11" title="11"></a>
- <a class="sourceLine" id="cb49-12" title="12">finite_span <span class="op">=</span> <span class="dv">20</span></a>
- <a class="sourceLine" id="cb49-13" title="13">lim <span class="op">=</span> <span class="dv">30</span></a>
- <a class="sourceLine" id="cb49-14" title="14">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>,<span class="dv">6</span>))</a>
- <a class="sourceLine" id="cb49-15" title="15"><span class="cf">for</span> c1 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb49-16" title="16"> <span class="cf">for</span> c2 <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>, <span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb49-17" title="17"> v3 <span class="op">=</span> c1<span class="op">*</span>v1 <span class="op">+</span> c2<span class="op">*</span>v2</a>
- <a class="sourceLine" id="cb49-18" title="18"> plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb49-19" title="19"> plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, v3[<span class="dv">0</span>], v3[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.5</span>,</a>
- <a class="sourceLine" id="cb49-20" title="20"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'green'</span>)</a>
- <a class="sourceLine" id="cb49-21" title="21"></a>
- <a class="sourceLine" id="cb49-22" title="22">plt.xlim([<span class="op">-</span>lim, lim])<span class="op">;</span> plt.ylim([<span class="op">-</span>lim, lim])</a>
- <a class="sourceLine" id="cb49-23" title="23">plt.show()<span class="op">;</span></a></code></pre></div>
- <pre><code>[1 0]
- [0 1]</code></pre>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_69_1.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="another-example-of-a-basis-of-a-subspace-ℝ3">Another Example Of A Basis Of A Subspace <span class="math inline"><em>ℝ</em><sup>3</sup></span></h2>
- <p><span class="math inline">$T = \begin{Bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{Bmatrix}$</span>. Is the Span of <span class="math inline"><em>T</em></span> a basis for <span class="math inline"><em>ℝ</em><sup>3</sup></span> ? Yes. <br><br> <span class="math inline">$U = \begin{Bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{Bmatrix}$</span>. Is the Span of <span class="math inline"><em>U</em></span> a basis for <span class="math inline"><em>ℝ</em><sup>3</sup></span> ? NO! <br><br> Why? The sum of the first <span class="math inline">3</span> vectors equals the <span class="math inline">4<sup><em>t</em><em>h</em></sup></span> vector.</p>
- <h1 id="vector-dot-and-cross-products">Vector Dot And Cross Products</h1>
- <p><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-dot-product-and-vector-length">Vector Dot And Cross Products</a></p>
- <ul>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-dot-product-and-vector-length?modal=1">Vector Dot Product And Vector Length</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/proving-vector-dot-product-properties?modal=1">Proving Vector Dot Product Properties</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/proof-of-the-cauchy-schwarz-inequality?modal=1">Proof Of The Cauchy-Schwarz Inequality</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/linear-algebra-vector-triangle-inequality?modal=1">Vector Triangle Inequality</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/defining-the-angle-between-vectors?modal=1">Defining The Angle Between Vectors</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/defining-a-plane-in-r3-with-a-point-and-normal-vector?modal=1">Defining A Plane In R3 With A Point And Normal Vector</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/linear-algebra-cross-product-introduction?modal=1">Cross Product Introduction</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/proof-relationship-between-cross-product-and-sin-of-angle?modal=1">Proof: Relationship Between Cross Product And Sin Of Angle</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/dot-and-cross-product-comparison-intuition?modal=1">Dot And Cross Product Comparison/Intuition</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-triple-product-expansion-very-optional?modal=1">Vector Triple Product Expansion (Very Optional)</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/normal-vector-from-plane-equation?modal=1">Normal Vector From Plane Equation</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/point-distance-to-plane?modal=1">Point Distance To Plane</a></li>
- <li><a href="https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/distance-between-planes?modal=1">Distance Between Planes</a></li>
- </ul>
- <h2 id="vector-dot-product-and-vector-length">Vector Dot Product And Vector Length</h2>
- <p><br> The dot product of two vectors is the sum of the products of their individual elements / components <br><br> <br /><span class="math display">$$ \vec{x} \cdot \vec{y} =
- \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
- \cdot
- \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}
- = x_1 y_1 + x_2 y_2 + \dots + x_n y_n $$</span><br /> <br><br> Also, the length of a vector $ $ is the square root of the dot product of that vector onto itself …</p>
- <p><br /><span class="math display">$$ \lVert \vec{a} \rVert = \sqrt{ \vec{a} \cdot \vec{a} } =
- \sqrt{ a_1 a_1 + a_2 a_2 + \dots + a_n a_n } $$</span><br /> <br><br> <strong>Note that dot products of vectors yield scalars</strong></p>
- <div class="sourceCode" id="cb51"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb51-1" title="1">v1 <span class="op">=</span> [<span class="dv">1</span>, <span class="dv">1</span>]<span class="op">;</span> v2 <span class="op">=</span> [<span class="dv">2</span>, <span class="dv">2</span>]</a>
- <a class="sourceLine" id="cb51-2" title="2"></a>
- <a class="sourceLine" id="cb51-3" title="3">v1_dot_v2 <span class="op">=</span> v1[<span class="dv">0</span>] <span class="op">*</span> v2[<span class="dv">0</span>] <span class="op">+</span> v1[<span class="dv">1</span>] <span class="op">*</span> v2[<span class="dv">1</span>]</a>
- <a class="sourceLine" id="cb51-4" title="4"><span class="bu">print</span>(<span class="ss">f'The dot product of v1 and v2 = </span><span class="sc">{</span>v1_dot_v2<span class="sc">}</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>The dot product of v1 and v2 = 4</code></pre>
- <div class="sourceCode" id="cb53"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb53-1" title="1">v1 <span class="op">=</span> [<span class="dv">1</span>, <span class="dv">1</span>]<span class="op">;</span> v2 <span class="op">=</span> [<span class="dv">2</span>, <span class="dv">2</span>]</a>
- <a class="sourceLine" id="cb53-2" title="2"></a>
- <a class="sourceLine" id="cb53-3" title="3"><span class="kw">def</span> dot_product(va, vb):</a>
- <a class="sourceLine" id="cb53-4" title="4"> <span class="cf">assert</span> <span class="bu">len</span>(va) <span class="op">==</span> <span class="bu">len</span>(vb), <span class="st">"Vectors are not the same dimension"</span></a>
- <a class="sourceLine" id="cb53-5" title="5"> va_dot_vb <span class="op">=</span> <span class="dv">0</span></a>
- <a class="sourceLine" id="cb53-6" title="6"> <span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(<span class="bu">len</span>(va)):</a>
- <a class="sourceLine" id="cb53-7" title="7"> va_dot_vb <span class="op">+=</span> va[i] <span class="op">*</span> vb[i]</a>
- <a class="sourceLine" id="cb53-8" title="8"></a>
- <a class="sourceLine" id="cb53-9" title="9"> <span class="cf">return</span> va_dot_vb</a>
- <a class="sourceLine" id="cb53-10" title="10"></a>
- <a class="sourceLine" id="cb53-11" title="11"><span class="bu">print</span>(<span class="ss">f'The dot product of v1 and v2 = </span><span class="sc">{</span>dot_product(v1, v2)<span class="sc">}</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>The dot product of v1 and v2 = 4</code></pre>
- <div class="sourceCode" id="cb55"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb55-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb55-2" title="2"></a>
- <a class="sourceLine" id="cb55-3" title="3"><span class="bu">print</span>(<span class="ss">f'The dot product of v1 and v2 = </span><span class="sc">{np.</span>dot(v1, v2)<span class="sc">}</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>The dot product of v1 and v2 = 4</code></pre>
- <div class="sourceCode" id="cb57"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb57-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb57-2" title="2"></a>
- <a class="sourceLine" id="cb57-3" title="3"><span class="bu">print</span>(<span class="ss">f'The dot product of v1 and v2 = </span><span class="sc">{np.</span>dot(np.array(v1), np.array(v2))<span class="sc">}</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>The dot product of v1 and v2 = 4</code></pre>
- <div class="sourceCode" id="cb59"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb59-1" title="1">va <span class="op">=</span> [<span class="dv">3</span>, <span class="dv">4</span>]</a>
- <a class="sourceLine" id="cb59-2" title="2"></a>
- <a class="sourceLine" id="cb59-3" title="3"><span class="bu">print</span>(<span class="ss">f'The length of va = </span><span class="sc">{</span>(np.dot(va, va))<span class="op">**</span><span class="fl">0.5</span><span class="sc">}</span><span class="ss">'</span>)</a></code></pre></div>
- <pre><code>The length of va = 5.0</code></pre>
- <h2 id="proof-of-the-cauchy-schwarz-inequality-with-code">Proof Of The Cauchy-Schwarz Inequality With Code</h2>
- <p>Let’s first review the Cauchy-Schwarz Inequality with math …</p>
- <p><br /><span class="math display">∥<em>x⃗</em>∥∥<em>y⃗</em>∥ ≥ |<em>x⃗</em> ⋅ <em>y⃗</em>|</span><br /></p>
- <p>Let’s think about this together. The Cauchy-Schwarz Inequality is saying that the product of the magnitudes of two vectors is always greater than or equal to the absolute value of the dot product of those two vectors.</p>
- <p>Let’s think about it even more. If the two vectors have the same direction, such as the angle between them is 0 degrees, then the product of their magnitudes will be the same as the absolute value of their dot products. If their is even a slight angle between the two vectors, then the product of their magnitudes will be greater than the absolute value of their dot products.</p>
- <p>Sal does a great job of proving this in his lecture on the Cauchy-Schwarz Inequality. Let’s do a pseudo proof with code.</p>
- <p>Let’s create a function that will check the Cauchy-Schwarz inequality for any given two vectors.</p>
- <div class="sourceCode" id="cb61"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb61-1" title="1"><span class="kw">def</span> cauchy_schwarz_inequality(va, vb):</a>
- <a class="sourceLine" id="cb61-2" title="2"> <span class="cf">assert</span> <span class="bu">len</span>(va) <span class="op">==</span> <span class="bu">len</span>(vb), <span class="st">"Vectors are not the same dimension"</span></a>
- <a class="sourceLine" id="cb61-3" title="3"> va_norm <span class="op">=</span> np.linalg.norm(va)</a>
- <a class="sourceLine" id="cb61-4" title="4"> vb_norm <span class="op">=</span> np.linalg.norm(vb)</a>
- <a class="sourceLine" id="cb61-5" title="5"> abs_va_dot_vb <span class="op">=</span> np.<span class="bu">abs</span>(np.dot(va, vb))</a>
- <a class="sourceLine" id="cb61-6" title="6"></a>
- <a class="sourceLine" id="cb61-7" title="7"> the_check <span class="op">=</span> <span class="bu">round</span>(va_norm <span class="op">*</span> vb_norm, <span class="dv">12</span>) <span class="op">>=</span> <span class="bu">round</span>(abs_va_dot_vb, <span class="dv">12</span>)</a>
- <a class="sourceLine" id="cb61-8" title="8"> <span class="cf">if</span> <span class="kw">not</span> the_check:</a>
- <a class="sourceLine" id="cb61-9" title="9"> <span class="bu">print</span>(va_norm <span class="op">*</span> vb_norm)</a>
- <a class="sourceLine" id="cb61-10" title="10"> <span class="bu">print</span>(abs_va_dot_vb)</a>
- <a class="sourceLine" id="cb61-11" title="11"> <span class="cf">return</span> <span class="st">"Cauchy-Schwarz Inequality Failed!"</span></a>
- <a class="sourceLine" id="cb61-12" title="12"> <span class="cf">else</span>:</a>
- <a class="sourceLine" id="cb61-13" title="13"> <span class="cf">return</span> <span class="st">"Cauchy-Schwarz Inequality Holds!"</span></a></code></pre></div>
- <div class="sourceCode" id="cb62"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb62-1" title="1">count <span class="op">=</span> <span class="dv">0</span></a>
- <a class="sourceLine" id="cb62-2" title="2">finite_span <span class="op">=</span> <span class="dv">10</span></a>
- <a class="sourceLine" id="cb62-3" title="3">did_not_hold <span class="op">=</span> <span class="va">False</span></a>
- <a class="sourceLine" id="cb62-4" title="4"></a>
- <a class="sourceLine" id="cb62-5" title="5"><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb62-6" title="6"> <span class="cf">for</span> j <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb62-7" title="7"> <span class="cf">for</span> k <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb62-8" title="8"> <span class="cf">for</span> l <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span>finite_span, finite_span<span class="op">+</span><span class="dv">1</span>):</a>
- <a class="sourceLine" id="cb62-9" title="9"> count <span class="op">+=</span> <span class="dv">1</span></a>
- <a class="sourceLine" id="cb62-10" title="10"> result <span class="op">=</span> cauchy_schwarz_inequality([i, j], [k, l])</a>
- <a class="sourceLine" id="cb62-11" title="11"> <span class="cf">if</span> result <span class="op">!=</span> <span class="st">"Cauchy-Schwarz Inequality Holds!"</span>:</a>
- <a class="sourceLine" id="cb62-12" title="12"> did_not_hold <span class="op">=</span> <span class="va">True</span></a>
- <a class="sourceLine" id="cb62-13" title="13"></a>
- <a class="sourceLine" id="cb62-14" title="14"><span class="cf">if</span> did_not_hold:</a>
- <a class="sourceLine" id="cb62-15" title="15"> <span class="bu">print</span>(<span class="st">"Cauchy-Schwarz Inequality Failed!"</span>)</a>
- <a class="sourceLine" id="cb62-16" title="16"><span class="cf">else</span>:</a>
- <a class="sourceLine" id="cb62-17" title="17"> <span class="bu">print</span>(<span class="ss">f"Cauchy-Schwarz Inequality held for </span><span class="sc">{</span>count<span class="sc">}</span><span class="ss"> tests"</span>)</a></code></pre></div>
- <pre><code>Cauchy-Schwarz Inequality held for 194481 tests</code></pre>
- <h2 id="vpython-code-to-run-from-an-ide">VPython Code To Run From An IDE</h2>
- <div class="sourceCode" id="cb64"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb64-1" title="1"><span class="co"># You MIGHT be able to get this to run in Colab, but</span></a>
- <a class="sourceLine" id="cb64-2" title="2"><span class="co"># I have not yet done this</span></a>
- <a class="sourceLine" id="cb64-3" title="3"><span class="im">import</span> vpython <span class="im">as</span> vp</a>
- <a class="sourceLine" id="cb64-4" title="4"></a>
- <a class="sourceLine" id="cb64-5" title="5">floor<span class="op">=</span>vp.box(pos<span class="op">=</span>vp.vector(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>),</a>
- <a class="sourceLine" id="cb64-6" title="6"> size<span class="op">=</span>vp.vector(<span class="dv">12</span>,<span class="fl">0.5</span>,<span class="dv">12</span>),</a>
- <a class="sourceLine" id="cb64-7" title="7"> color<span class="op">=</span>vp.color.red)</a>
- <a class="sourceLine" id="cb64-8" title="8"></a>
- <a class="sourceLine" id="cb64-9" title="9">ball<span class="op">=</span>vp.sphere(pos<span class="op">=</span>vp.vector(<span class="dv">0</span>,<span class="dv">7</span>,<span class="dv">0</span>),</a>
- <a class="sourceLine" id="cb64-10" title="10"> radius<span class="op">=</span><span class="dv">2</span>,</a>
- <a class="sourceLine" id="cb64-11" title="11"> color<span class="op">=</span>vp.color.blue)</a>
- <a class="sourceLine" id="cb64-12" title="12"></a>
- <a class="sourceLine" id="cb64-13" title="13">ball.velocity <span class="op">=</span> vp.vector(<span class="dv">0</span>,<span class="op">-</span><span class="dv">1</span>,<span class="dv">0</span>)</a>
- <a class="sourceLine" id="cb64-14" title="14">dt <span class="op">=</span> <span class="fl">0.01</span></a>
- <a class="sourceLine" id="cb64-15" title="15"></a>
- <a class="sourceLine" id="cb64-16" title="16"><span class="cf">while</span> <span class="va">True</span>:</a>
- <a class="sourceLine" id="cb64-17" title="17"> vp.rate(<span class="dv">100</span>)</a>
- <a class="sourceLine" id="cb64-18" title="18"> ball.pos <span class="op">=</span> ball.pos <span class="op">+</span> ball.velocity <span class="op">*</span> dt</a>
- <a class="sourceLine" id="cb64-19" title="19"> <span class="cf">if</span> ball.pos.y <span class="op"><</span> (ball.radius<span class="op">+</span>floor.size.y<span class="op">/</span><span class="dv">2</span>):</a>
- <a class="sourceLine" id="cb64-20" title="20"> ball.velocity.y <span class="op">=</span> <span class="bu">abs</span>(ball.velocity.y)</a>
- <a class="sourceLine" id="cb64-21" title="21"> <span class="cf">else</span>:</a>
- <a class="sourceLine" id="cb64-22" title="22"> ball.velocity.y <span class="op">=</span> ball.velocity.y <span class="op">-</span> <span class="fl">9.8</span> <span class="op">*</span> dt</a></code></pre></div>
- <h2 id="vector-triangle-inequality">Vector Triangle Inequality</h2>
- <p>Cauchy-Schwarz Inequality Repeated</p>
- <p>For <br /><span class="math display"><em>x⃗</em> <em>a</em><em>n</em><em>d</em> <em>y⃗</em> ∈ <em>ℝ</em><sup><em>n</em></sup></span><br /></p>
- <p>with $ ;; and ;; $ as non-zero vectors,</p>
- <p><br /><span class="math display">∥<em>x⃗</em>∥∥<em>y⃗</em>∥ ≥ |<em>x⃗</em> ⋅ <em>y⃗</em>|</span><br /></p>
- <p>Note too that if c is non zero, then $;; ; = ; c ; $ $ $ $ = $</p>
- <p>Let’s experiment. Remember that the length of a vector squared is equal to the dot product of that vector with itself.</p>
- <p>Let’s remind ourselves that</p>
- <p><br /><span class="math display">∥<em>a⃗</em>∥<sup>2</sup> = <em>a⃗</em> ⋅ <em>a⃗</em></span><br /></p>
- <p>So, let’s try something interesting …</p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥<sup>2</sup> = (<em>x⃗</em> + <em>y⃗</em>) ⋅ (<em>x⃗</em> + <em>y⃗</em>)</span><br /></p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥<sup>2</sup> = (<em>x⃗</em> ⋅ <em>x⃗</em>) + 2(<em>x⃗</em> ⋅ <em>y⃗</em>) + (<em>y⃗</em> ⋅ <em>y⃗</em>)</span><br /></p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥<sup>2</sup> = ∥<em>x⃗</em>∥<sup>2</sup> + 2(<em>x⃗</em> ⋅ <em>y⃗</em>) + ∥<em>y⃗</em>∥<sup>2</sup></span><br /></p>
- <p>Now remember that</p>
- <p><br /><span class="math display">|<em>x⃗</em> ⋅ <em>y⃗</em>| ≥ <em>x⃗</em> ⋅ <em>y⃗</em></span><br /></p>
- <p>and thus</p>
- <p><br /><span class="math display">∥<em>x⃗</em>∥∥<em>y⃗</em>∥ ≥ |<em>x⃗</em> ⋅ <em>y⃗</em>| ≥ <em>x⃗</em> ⋅ <em>y⃗</em></span><br /></p>
- <p>Therefore,</p>
- <p><br /><span class="math display">∥<em>x⃗</em>∥<sup>2</sup> + 2∥<em>x⃗</em>∥∥<em>y⃗</em>∥ + ∥<em>y⃗</em>∥<sup>2</sup> ≥ ∥<em>x⃗</em> + <em>y⃗</em>∥<sup>2</sup></span><br /></p>
- <p>or</p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥<sup>2</sup> ≤ ∥<em>x⃗</em>∥<sup>2</sup> + 2∥<em>x⃗</em>∥∥<em>y⃗</em>∥ + ∥<em>y⃗</em>∥<sup>2</sup></span><br /></p>
- <p>But, looking at the right, we see that it is a square. So,</p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥<sup>2</sup> ≤ (∥<em>x⃗</em>∥ + ∥<em>y⃗</em>∥)<sup>2</sup></span><br /></p>
- <p>Now, let’s take the square root of both sides …</p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥ ≤ ∥<em>x⃗</em>∥ + ∥<em>y⃗</em>∥</span><br /></p>
- <p>This is called <strong>The Triangle Inequality</strong></p>
- <p>So now it’s time for our Python and Matplotlib graph paper!</p>
- <div class="sourceCode" id="cb65"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb65-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb65-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb65-3" title="3"></a>
- <a class="sourceLine" id="cb65-4" title="4">plt.rc_context({ <span class="co"># Only needed for some dark modes</span></a>
- <a class="sourceLine" id="cb65-5" title="5"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb65-6" title="6"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb65-7" title="7"></a>
- <a class="sourceLine" id="cb65-8" title="8"><span class="co"># Create a pallet plot for vectors</span></a>
- <a class="sourceLine" id="cb65-9" title="9">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb65-10" title="10">plt.xlim([<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">1</span>, <span class="dv">7</span>])</a>
- <a class="sourceLine" id="cb65-11" title="11"><span class="co"># plt.xlim([-5, 3]); plt.ylim([-1, 7])</span></a>
- <a class="sourceLine" id="cb65-12" title="12">plt.grid()</a>
- <a class="sourceLine" id="cb65-13" title="13"></a>
- <a class="sourceLine" id="cb65-14" title="14">x <span class="op">=</span> [<span class="dv">2</span>, <span class="dv">4</span>]<span class="op">;</span> y <span class="op">=</span> [<span class="op">-</span><span class="dv">4</span>, <span class="dv">2</span>]</a>
- <a class="sourceLine" id="cb65-15" title="15"></a>
- <a class="sourceLine" id="cb65-16" title="16">plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb65-17" title="17"> ec <span class="op">=</span><span class="st">'green'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb65-18" title="18">plt.arrow(<span class="dv">2</span>, <span class="dv">4</span>, y[<span class="dv">0</span>], y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb65-19" title="19"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb65-20" title="20"><span class="co"># plt.arrow(0, 0, y[0], y[1], head_width = 0.2, width = 0.05,</span></a>
- <a class="sourceLine" id="cb65-21" title="21"><span class="co"># ec ='red', length_includes_head=True)</span></a>
- <a class="sourceLine" id="cb65-22" title="22"></a>
- <a class="sourceLine" id="cb65-23" title="23">x_plus_y <span class="op">=</span> np.array(x) <span class="op">+</span> np.array(y)</a>
- <a class="sourceLine" id="cb65-24" title="24"></a>
- <a class="sourceLine" id="cb65-25" title="25">plt.text(<span class="dv">1</span>, <span class="dv">1</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb65-26" title="26">plt.text(<span class="dv">0</span>, <span class="fl">5.5</span>, <span class="vs">r'$\vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb65-27" title="27">plt.text(<span class="op">-</span><span class="dv">2</span>, <span class="fl">2.5</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs"> + \vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb65-28" title="28"></a>
- <a class="sourceLine" id="cb65-29" title="29">plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x_plus_y[<span class="dv">0</span>], x_plus_y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>,</a>
- <a class="sourceLine" id="cb65-30" title="30"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'blue'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb65-31" title="31">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_89_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>Now, what is the extreme case where</p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥ = ∥<em>x⃗</em>∥ + ∥<em>y⃗</em>∥</span><br /></p>
- <p>It must be when $ ;; and ;; $ are pointing in the same direction. If they are in opposite directions, the minimum of an inequality happens on the right hand side.</p>
- <div class="sourceCode" id="cb66"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb66-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb66-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb66-3" title="3"></a>
- <a class="sourceLine" id="cb66-4" title="4"><span class="co"># Create a pallet plot for vectors</span></a>
- <a class="sourceLine" id="cb66-5" title="5">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb66-6" title="6">plt.xlim([<span class="op">-</span><span class="dv">7</span>, <span class="dv">1</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">1</span>, <span class="dv">7</span>])</a>
- <a class="sourceLine" id="cb66-7" title="7"><span class="co"># plt.xlim([-3, 3]); plt.ylim([-3, 3])</span></a>
- <a class="sourceLine" id="cb66-8" title="8">plt.grid()</a>
- <a class="sourceLine" id="cb66-9" title="9"></a>
- <a class="sourceLine" id="cb66-10" title="10">x <span class="op">=</span> [<span class="op">-</span><span class="dv">2</span>, <span class="dv">2</span>]<span class="op">;</span> y <span class="op">=</span> [<span class="op">-</span><span class="dv">4</span>, <span class="dv">4</span>]</a>
- <a class="sourceLine" id="cb66-11" title="11"><span class="co"># x = [2, 2]; y = [-4, -4]</span></a>
- <a class="sourceLine" id="cb66-12" title="12"></a>
- <a class="sourceLine" id="cb66-13" title="13">plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb66-14" title="14"> ec <span class="op">=</span><span class="st">'green'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb66-15" title="15">plt.arrow(x[<span class="dv">0</span>]<span class="op">-</span><span class="fl">0.1</span>, x[<span class="dv">1</span>]<span class="op">+</span><span class="fl">0.1</span>, y[<span class="dv">0</span>], y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb66-16" title="16"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb66-17" title="17"></a>
- <a class="sourceLine" id="cb66-18" title="18">x_plus_y <span class="op">=</span> np.array(x) <span class="op">+</span> np.array(y)</a>
- <a class="sourceLine" id="cb66-19" title="19"></a>
- <a class="sourceLine" id="cb66-20" title="20">plt.text(<span class="op">-</span><span class="fl">1.5</span>, <span class="fl">0.5</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb66-21" title="21">plt.text(<span class="op">-</span><span class="dv">4</span>, <span class="fl">3.0</span>, <span class="vs">r'$\vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb66-22" title="22">plt.text(<span class="op">-</span><span class="dv">3</span>, <span class="fl">3.7</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs"> + \vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb66-23" title="23"></a>
- <a class="sourceLine" id="cb66-24" title="24"><span class="co"># </span><span class="al">NOTE</span><span class="co"> that we are offsetting by the 2 * width of arrows to see all vectors</span></a>
- <a class="sourceLine" id="cb66-25" title="25">plt.arrow(<span class="fl">0.1</span>, <span class="fl">0.1</span>, x_plus_y[<span class="dv">0</span>], x_plus_y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>,</a>
- <a class="sourceLine" id="cb66-26" title="26"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'blue'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb66-27" title="27"><span class="co"># plt.arrow(0.1, -0.1, x_plus_y[0], x_plus_y[1], head_width = 0.2,</span></a>
- <a class="sourceLine" id="cb66-28" title="28"><span class="co"># width = 0.05, ec ='blue', length_includes_head=True)</span></a>
- <a class="sourceLine" id="cb66-29" title="29">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_91_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>We find a minimum for the right hand side of</p>
- <p><br /><span class="math display">∥<em>x⃗</em> + <em>y⃗</em>∥ ≤ ∥<em>x⃗</em>∥ + ∥<em>y⃗</em>∥</span><br /></p>
- <p>when the vectors point in <strong>perfectly</strong> opposite directions (they are $ 180^{} $ with respect to each other).</p>
- <div class="sourceCode" id="cb67"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb67-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb67-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb67-3" title="3"></a>
- <a class="sourceLine" id="cb67-4" title="4"><span class="co"># Create a pallet plot for vectors</span></a>
- <a class="sourceLine" id="cb67-5" title="5">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb67-6" title="6"><span class="co"># plt.xlim([-7, 1]); plt.ylim([-1, 7])</span></a>
- <a class="sourceLine" id="cb67-7" title="7">plt.xlim([<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>])</a>
- <a class="sourceLine" id="cb67-8" title="8">plt.grid()</a>
- <a class="sourceLine" id="cb67-9" title="9"></a>
- <a class="sourceLine" id="cb67-10" title="10"><span class="co"># x = [-2, 2]; y = [-4, 4]</span></a>
- <a class="sourceLine" id="cb67-11" title="11">x <span class="op">=</span> [<span class="dv">2</span>, <span class="dv">2</span>]<span class="op">;</span> y <span class="op">=</span> [<span class="op">-</span><span class="dv">4</span>, <span class="dv">-4</span>]</a>
- <a class="sourceLine" id="cb67-12" title="12"></a>
- <a class="sourceLine" id="cb67-13" title="13">plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb67-14" title="14"> ec <span class="op">=</span><span class="st">'green'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb67-15" title="15">plt.arrow(x[<span class="dv">0</span>]<span class="op">-</span><span class="fl">0.1</span>, x[<span class="dv">1</span>]<span class="op">+</span><span class="fl">0.1</span>, y[<span class="dv">0</span>], y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb67-16" title="16"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb67-17" title="17"></a>
- <a class="sourceLine" id="cb67-18" title="18">x_plus_y <span class="op">=</span> np.array(x) <span class="op">+</span> np.array(y)</a>
- <a class="sourceLine" id="cb67-19" title="19"></a>
- <a class="sourceLine" id="cb67-20" title="20">plt.text(<span class="op">-</span><span class="fl">1.5</span>, <span class="fl">0.5</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb67-21" title="21">plt.text(<span class="op">-</span><span class="dv">4</span>, <span class="fl">3.0</span>, <span class="vs">r'$\vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb67-22" title="22">plt.text(<span class="op">-</span><span class="dv">3</span>, <span class="fl">3.7</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs"> + \vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb67-23" title="23"></a>
- <a class="sourceLine" id="cb67-24" title="24"><span class="co"># </span><span class="al">NOTE</span><span class="co"> that we are offsetting by the 2 * width of arrows to see all vectors</span></a>
- <a class="sourceLine" id="cb67-25" title="25"><span class="co"># plt.arrow(0.1, 0.1, x_plus_y[0], x_plus_y[1], head_width = 0.2,</span></a>
- <a class="sourceLine" id="cb67-26" title="26"><span class="co"># width = 0.05, ec ='blue', length_includes_head=True)</span></a>
- <a class="sourceLine" id="cb67-27" title="27">plt.arrow(<span class="fl">0.1</span>, <span class="fl">-0.1</span>, x_plus_y[<span class="dv">0</span>], x_plus_y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>,</a>
- <a class="sourceLine" id="cb67-28" title="28"> width <span class="op">=</span> <span class="fl">0.05</span>, ec <span class="op">=</span><span class="st">'blue'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb67-29" title="29">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_93_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>Finally, what is ULTRA cool is that this works for $ ℝ^n $!</p>
- <h2 id="our-dynamic-experiment">Our Dynamic Experiment</h2>
- <div class="sourceCode" id="cb68"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb68-1" title="1"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb68-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb68-3" title="3"><span class="im">from</span> math <span class="im">import</span> cos, sin, acos, pi</a>
- <a class="sourceLine" id="cb68-4" title="4"></a>
- <a class="sourceLine" id="cb68-5" title="5">plt.rc_context({ <span class="co"># Only needed for some dark modes</span></a>
- <a class="sourceLine" id="cb68-6" title="6"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb68-7" title="7"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a>
- <a class="sourceLine" id="cb68-8" title="8"></a>
- <a class="sourceLine" id="cb68-9" title="9"><span class="co"># Create a pallet plot for vectors</span></a>
- <a class="sourceLine" id="cb68-10" title="10">plt.figure(figsize<span class="op">=</span>(<span class="dv">10</span>, <span class="dv">10</span>))</a>
- <a class="sourceLine" id="cb68-11" title="11">plt.plot([<span class="dv">0</span>, <span class="fl">0.001</span>],[<span class="dv">0</span>, <span class="fl">0.001</span>], c<span class="op">=</span><span class="st">'white'</span>)</a>
- <a class="sourceLine" id="cb68-12" title="12">plt.xlim([<span class="op">-</span><span class="dv">3</span>, <span class="dv">7</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">1</span>, <span class="dv">10</span>])</a>
- <a class="sourceLine" id="cb68-13" title="13">plt.grid()</a>
- <a class="sourceLine" id="cb68-14" title="14"></a>
- <a class="sourceLine" id="cb68-15" title="15">xmag <span class="op">=</span> <span class="dv">5</span><span class="op">;</span> ymag <span class="op">=</span> <span class="dv">5</span><span class="op">;</span> x <span class="op">=</span> [<span class="dv">3</span>, <span class="dv">4</span>]</a>
- <a class="sourceLine" id="cb68-16" title="16"></a>
- <a class="sourceLine" id="cb68-17" title="17">align_dir <span class="op">=</span> acos(<span class="dv">3</span><span class="op">/</span><span class="dv">5</span>)<span class="op">/</span>pi<span class="op">*</span><span class="dv">180</span></a>
- <a class="sourceLine" id="cb68-18" title="18">Angles <span class="op">=</span> np.arange(<span class="dv">0</span>, <span class="dv">180</span> <span class="op">+</span> <span class="dv">1</span>, <span class="dv">30</span>)</a>
- <a class="sourceLine" id="cb68-19" title="19"></a>
- <a class="sourceLine" id="cb68-20" title="20">plt.arrow(<span class="dv">0</span>, <span class="dv">0</span>, x[<span class="dv">0</span>], x[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb68-21" title="21"> ec <span class="op">=</span><span class="st">'green'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb68-22" title="22">plt.text(<span class="dv">2</span>, <span class="fl">1.8</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb68-23" title="23"></a>
- <a class="sourceLine" id="cb68-24" title="24"><span class="cf">for</span> angle <span class="kw">in</span> Angles:</a>
- <a class="sourceLine" id="cb68-25" title="25"> rad <span class="op">=</span> (angle <span class="op">+</span> align_dir) <span class="op">/</span> <span class="dv">180</span> <span class="op">*</span> pi</a>
- <a class="sourceLine" id="cb68-26" title="26"> trad <span class="op">=</span> (angle <span class="op">+</span> align_dir <span class="op">-</span> <span class="dv">6</span>) <span class="op">/</span> <span class="dv">180</span> <span class="op">*</span> pi</a>
- <a class="sourceLine" id="cb68-27" title="27"> y <span class="op">=</span> [ymag<span class="op">*</span>cos(rad), ymag<span class="op">*</span>sin(rad)]</a>
- <a class="sourceLine" id="cb68-28" title="28"> ty <span class="op">=</span> [ymag<span class="op">*</span>cos(trad), ymag<span class="op">*</span>sin(trad)]</a>
- <a class="sourceLine" id="cb68-29" title="29"></a>
- <a class="sourceLine" id="cb68-30" title="30"> plt.arrow(x[<span class="dv">0</span>], x[<span class="dv">1</span>], y[<span class="dv">0</span>], y[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb68-31" title="31"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb68-32" title="32"></a>
- <a class="sourceLine" id="cb68-33" title="33"> z <span class="op">=</span> np.array(x) <span class="op">+</span> np.array(y)</a>
- <a class="sourceLine" id="cb68-34" title="34"> tp <span class="op">=</span> np.array(x) <span class="op">+</span> np.array(ty)<span class="op">*</span><span class="fl">0.7</span></a>
- <a class="sourceLine" id="cb68-35" title="35"></a>
- <a class="sourceLine" id="cb68-36" title="36"> plt.text(tp[<span class="dv">0</span>], tp[<span class="dv">1</span>], <span class="vs">r'$\vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'left'</span>)</a>
- <a class="sourceLine" id="cb68-37" title="37"> plt.text(z[<span class="dv">0</span>]<span class="op">*</span><span class="fl">0.9</span> <span class="op">-</span> <span class="fl">0.25</span>, z[<span class="dv">1</span>]<span class="op">*</span><span class="fl">0.9</span>, <span class="vs">r'$\vec</span><span class="sc">{x}</span><span class="vs"> + \vec</span><span class="sc">{y}</span><span class="vs">$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>,</a>
- <a class="sourceLine" id="cb68-38" title="38"> ha<span class="op">=</span><span class="st">'right'</span>)</a>
- <a class="sourceLine" id="cb68-39" title="39"> plt.text(z[<span class="dv">0</span>]<span class="op">*</span><span class="fl">0.8</span> <span class="op">-</span> <span class="fl">0.2</span>, z[<span class="dv">1</span>]<span class="op">*</span><span class="fl">0.8</span> <span class="op">-</span> <span class="fl">0.25</span>,</a>
- <a class="sourceLine" id="cb68-40" title="40"> <span class="ss">f'</span><span class="sc">{</span><span class="bu">round</span>(angle, <span class="dv">2</span>)<span class="sc">}</span><span class="ss">'</span><span class="op">+</span><span class="vs">r'$^{\circ}$'</span>, fontsize<span class="op">=</span><span class="dv">14</span>, ha<span class="op">=</span><span class="st">'right'</span>)</a>
- <a class="sourceLine" id="cb68-41" title="41"></a>
- <a class="sourceLine" id="cb68-42" title="42"> plt.arrow(<span class="fl">0.07</span>, <span class="fl">-0.07</span>, z[<span class="dv">0</span>], z[<span class="dv">1</span>], head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb68-43" title="43"> ec <span class="op">=</span><span class="st">'blue'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb68-44" title="44"> <span class="bu">print</span>(<span class="ss">f'x + y with y </span><span class="sc">{</span>angle<span class="sc">}</span><span class="ss"> degrees ccw from x = </span><span class="sc">{</span><span class="bu">round</span>(np.linalg.norm(z), <span class="dv">5</span>)<span class="sc">:.5f}</span><span class="ss">'</span>)</a>
- <a class="sourceLine" id="cb68-45" title="45"></a>
- <a class="sourceLine" id="cb68-46" title="46"><span class="bu">print</span>()</a>
- <a class="sourceLine" id="cb68-47" title="47">plt.show()<span class="op">;</span></a></code></pre></div>
- <pre><code>x + y with y 0 degrees ccw from x = 10.00000
- x + y with y 30 degrees ccw from x = 9.65926
- x + y with y 60 degrees ccw from x = 8.66025
- x + y with y 90 degrees ccw from x = 7.07107
- x + y with y 120 degrees ccw from x = 5.00000
- x + y with y 150 degrees ccw from x = 2.58819
- x + y with y 180 degrees ccw from x = 0.00000</code></pre>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_96_1.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <h2 id="a-line-in-2d-ℝ2-using-linear-algebra">A Line In 2D, <span class="math inline"><em>ℝ</em><sup>2</sup></span>, Using Linear Algebra</h2>
- <p>An equation that defines a line subspace in 2D space or <span class="math inline"><em>ℝ</em><sup>2</sup></span> is <br><br> <br /><span class="math display">$$ \begin{bmatrix}
- a_1 \\ a_2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}
- = a_1 x + a_2 y = d $$</span><br /> <br> But what do we choose for $ a_1 $ and $ a_2 $? The vector normal to the line that we want.</p>
- <p>If I want a slope of 1, the normal to that line is the vector</p>
- <p><br /><span class="math display">$$ \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} =
- \begin{bmatrix} -1 \\ 1 \end{bmatrix} $$</span><br /></p>
- <p>What is the value for <span class="math inline"><em>d</em></span>? A <span class="math inline"><em>y</em></span> intercept if we solve for <span class="math inline"><em>y</em></span> interms of <span class="math inline"><em>x</em></span>, and an <span class="math inline"><em>x</em></span> intercept if we solve for <span class="math inline"><em>x</em></span> in terms of <span class="math inline"><em>y</em></span>!</p>
- <p><br /><span class="math display"><em>y</em> = − <em>a</em><sub>1</sub>/<em>a</em><sub>2</sub><em>x</em> + <em>d</em>/<em>a</em><sub>2</sub> = <em>m</em><em>x</em> + <em>y</em><sub><em>i</em><em>n</em><em>t</em></sub></span><br /></p>
- <p>Let’s see 3 examples of normal vectors and y intercepts:</p>
- <table>
- <thead>
- <tr class="header">
- <th>Normal</th>
- <th>Y Intercept</th>
- </tr>
- </thead>
- <tbody>
- <tr class="odd">
- <td>[-2, 1]</td>
- <td>1</td>
- </tr>
- <tr class="even">
- <td>[-1, 1]</td>
- <td>0</td>
- </tr>
- <tr class="odd">
- <td>[-1, 2]</td>
- <td>-1</td>
- </tr>
- </tbody>
- </table>
- <div class="sourceCode" id="cb70"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb70-1" title="1">x <span class="op">=</span> []<span class="op">;</span> yofx_10 <span class="op">=</span> []<span class="op">;</span> yofx_21 <span class="op">=</span> []<span class="op">;</span> yofx_0p5m1 <span class="op">=</span> []</a>
- <a class="sourceLine" id="cb70-2" title="2"></a>
- <a class="sourceLine" id="cb70-3" title="3"><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span><span class="dv">60</span>, <span class="dv">61</span>, <span class="dv">2</span>):</a>
- <a class="sourceLine" id="cb70-4" title="4"> x.append(i<span class="op">/</span><span class="dv">10</span>)</a>
- <a class="sourceLine" id="cb70-5" title="5"> yofx_10.append(<span class="dv">1</span><span class="op">*</span>i<span class="op">/</span><span class="dv">10</span><span class="op">+</span><span class="dv">0</span>)</a>
- <a class="sourceLine" id="cb70-6" title="6"> yofx_21.append(<span class="dv">2</span><span class="op">*</span>(i<span class="op">/</span><span class="dv">10</span>)<span class="op">+</span><span class="dv">1</span>)</a>
- <a class="sourceLine" id="cb70-7" title="7"> yofx_0p5m1.append(<span class="fl">0.5</span><span class="op">*</span>(i<span class="op">/</span><span class="dv">10</span>)<span class="op">-</span><span class="dv">1</span>)</a></code></pre></div>
- <div class="sourceCode" id="cb71"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb71-1" title="1"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb71-2" title="2"></a>
- <a class="sourceLine" id="cb71-3" title="3">plt.figure(figsize<span class="op">=</span>(<span class="dv">8</span>,<span class="dv">8</span>))</a>
- <a class="sourceLine" id="cb71-4" title="4">plt.xlim([<span class="op">-</span><span class="dv">6</span>, <span class="dv">6</span>])<span class="op">;</span> plt.ylim([<span class="op">-</span><span class="dv">6</span>, <span class="dv">6</span>])</a>
- <a class="sourceLine" id="cb71-5" title="5">plt.plot(x, yofx_10)<span class="op">;</span> plt.plot(x, yofx_21)<span class="op">;</span> plt.plot(x, yofx_0p5m1)</a>
- <a class="sourceLine" id="cb71-6" title="6">plt.arrow(<span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">-1</span>, <span class="fl">0.5</span>, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb71-7" title="7"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb71-8" title="8">plt.arrow(<span class="dv">4</span>, <span class="dv">4</span>, <span class="dv">-1</span>, <span class="dv">1</span>, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb71-9" title="9"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb71-10" title="10">plt.arrow(<span class="dv">4</span>, <span class="dv">1</span>, <span class="fl">-0.5</span>, <span class="dv">1</span>, head_width <span class="op">=</span> <span class="fl">0.2</span>, width <span class="op">=</span> <span class="fl">0.05</span>,</a>
- <a class="sourceLine" id="cb71-11" title="11"> ec <span class="op">=</span><span class="st">'red'</span>, length_includes_head<span class="op">=</span><span class="va">True</span>)</a>
- <a class="sourceLine" id="cb71-12" title="12">plt.grid()</a>
- <a class="sourceLine" id="cb71-13" title="13">plt.show()</a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_100_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>Can we also treat <span class="math inline">$\bf A$</span> as a vector?</p>
- <div class="sourceCode" id="cb72"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb72-1" title="1">line <span class="op">=</span> [[<span class="op">-</span><span class="dv">3</span>, <span class="dv">-2</span>], [<span class="dv">0</span>, <span class="dv">1</span>], [<span class="dv">3</span>, <span class="dv">4</span>]]</a>
- <a class="sourceLine" id="cb72-2" title="2">dfl <span class="op">=</span> pd.DataFrame(data<span class="op">=</span>line, columns<span class="op">=</span>[<span class="st">'X'</span>, <span class="st">'Y'</span>])</a>
- <a class="sourceLine" id="cb72-3" title="3">dfl</a></code></pre></div>
- <div id="df-ba983a39-0d36-49db-9c90-c6fed8fb1993">
- <pre><code><div class="colab-df-container">
- <div></code></pre>
- <style scoped>
- .dataframe tbody tr th:only-of-type {
- vertical-align: middle;
- }
- .dataframe tbody tr th {
- vertical-align: top;
- }
- .dataframe thead th {
- text-align: right;
- }
- </style>
- <table border="1" class="dataframe">
- <thead>
- <tr style="text-align: right;">
- <th>
- </th>
- <th>
- X
- </th>
- <th>
- Y
- </th>
- </tr>
- </thead>
- <tbody>
- <tr>
- <th>
- 0
- </th>
- <td>
- -3
- </td>
- <td>
- -2
- </td>
- </tr>
- <tr>
- <th>
- 1
- </th>
- <td>
- 0
- </td>
- <td>
- 1
- </td>
- </tr>
- <tr>
- <th>
- 2
- </th>
- <td>
- 3
- </td>
- <td>
- 4
- </td>
- </tr>
- </tbody>
- </table>
- </div>
- <button class="colab-df-convert" onclick="convertToInteractive('df-ba983a39-0d36-49db-9c90-c6fed8fb1993')" title="Convert this dataframe to an interactive table." style="display:none;">
- <svg xmlns="http://www.w3.org/2000/svg" height="24px"viewBox="0 0 24 24"
- width="24px"> <path d="M0 0h24v24H0V0z" fill="none"/> <path d="M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z"/><path d="M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z"/> </svg>
- </button>
- <style>
- .colab-df-container {
- display:flex;
- flex-wrap:wrap;
- gap: 12px;
- }
- .colab-df-convert {
- background-color: #E8F0FE;
- border: none;
- border-radius: 50%;
- cursor: pointer;
- display: none;
- fill: #1967D2;
- height: 32px;
- padding: 0 0 0 0;
- width: 32px;
- }
- .colab-df-convert:hover {
- background-color: #E2EBFA;
- box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);
- fill: #174EA6;
- }
- [theme=dark] .colab-df-convert {
- background-color: #3B4455;
- fill: #D2E3FC;
- }
- [theme=dark] .colab-df-convert:hover {
- background-color: #434B5C;
- box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);
- filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));
- fill: #FFFFFF;
- }
- </style>
- <script>
- const buttonEl =
- document.querySelector('#df-ba983a39-0d36-49db-9c90-c6fed8fb1993 button.colab-df-convert');
- buttonEl.style.display =
- google.colab.kernel.accessAllowed ? 'block' : 'none';
- async function convertToInteractive(key) {
- const element = document.querySelector('#df-ba983a39-0d36-49db-9c90-c6fed8fb1993');
- const dataTable =
- await google.colab.kernel.invokeFunction('convertToInteractive',
- [key], {});
- if (!dataTable) return;
- const docLinkHtml = 'Like what you see? Visit the ' +
- '<a target="_blank" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'
- + ' to learn more about interactive tables.';
- element.innerHTML = '';
- dataTable['output_type'] = 'display_data';
- await google.colab.output.renderOutput(dataTable, element);
- const docLink = document.createElement('div');
- docLink.innerHTML = docLinkHtml;
- element.appendChild(docLink);
- }
- </script>
- </div>
- </div>
- <h2 id="the-equation-for-a-plane-in-3d-space---ℝ3">The Equation for a Plane in 3D Space - <span class="math inline"><em>ℝ</em><sup>3</sup></span></h2>
- <p><br /><span class="math display">$$ \vec A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} =
- \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \cdot
- \begin{bmatrix} x \\ y \\ z \end{bmatrix}
- = a_1 x + a_2 y + a_3 z = d $$</span><br /> <br> where <span class="math inline">$\bf A$</span> is normal to the plane!</p>
- <p>Now, IF you do NOT know <span class="math inline"><em>A</em></span>, but you know 3 points in the plane, you can solve for <span class="math inline"><em>A</em></span> this way …</p>
- <p><br /><span class="math display">$$\begin{bmatrix}
- x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3
- \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} =
- \begin{bmatrix} d \\ d \\ d \end{bmatrix}$$</span><br /> <br> We need at least 3 points in $ ℝ^3 $ to develop this equation for a plane. Once we have solved for $ \bf A$ as a vector?</p>
- <div class="sourceCode" id="cb74"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb74-1" title="1">line <span class="op">=</span> [[<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>], [<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>]]</a>
- <a class="sourceLine" id="cb74-2" title="2">dfl <span class="op">=</span> pd.DataFrame(data<span class="op">=</span>line, columns<span class="op">=</span>[<span class="st">'X'</span>, <span class="st">'Y'</span>, <span class="st">'Z'</span>])</a>
- <a class="sourceLine" id="cb74-3" title="3">dfl</a></code></pre></div>
- <div id="df-86e22d6b-a3d1-419c-9f8d-219652fb460c">
- <pre><code><div class="colab-df-container">
- <div></code></pre>
- <style scoped>
- .dataframe tbody tr th:only-of-type {
- vertical-align: middle;
- }
- .dataframe tbody tr th {
- vertical-align: top;
- }
- .dataframe thead th {
- text-align: right;
- }
- </style>
- <table border="1" class="dataframe">
- <thead>
- <tr style="text-align: right;">
- <th>
- </th>
- <th>
- X
- </th>
- <th>
- Y
- </th>
- <th>
- Z
- </th>
- </tr>
- </thead>
- <tbody>
- <tr>
- <th>
- 0
- </th>
- <td>
- 0
- </td>
- <td>
- 0
- </td>
- <td>
- 0
- </td>
- </tr>
- <tr>
- <th>
- 1
- </th>
- <td>
- 2
- </td>
- <td>
- 2
- </td>
- <td>
- 2
- </td>
- </tr>
- </tbody>
- </table>
- </div>
- <button class="colab-df-convert" onclick="convertToInteractive('df-86e22d6b-a3d1-419c-9f8d-219652fb460c')" title="Convert this dataframe to an interactive table." style="display:none;">
- <svg xmlns="http://www.w3.org/2000/svg" height="24px"viewBox="0 0 24 24"
- width="24px"> <path d="M0 0h24v24H0V0z" fill="none"/> <path d="M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z"/><path d="M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z"/> </svg>
- </button>
- <style>
- .colab-df-container {
- display:flex;
- flex-wrap:wrap;
- gap: 12px;
- }
- .colab-df-convert {
- background-color: #E8F0FE;
- border: none;
- border-radius: 50%;
- cursor: pointer;
- display: none;
- fill: #1967D2;
- height: 32px;
- padding: 0 0 0 0;
- width: 32px;
- }
- .colab-df-convert:hover {
- background-color: #E2EBFA;
- box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);
- fill: #174EA6;
- }
- [theme=dark] .colab-df-convert {
- background-color: #3B4455;
- fill: #D2E3FC;
- }
- [theme=dark] .colab-df-convert:hover {
- background-color: #434B5C;
- box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);
- filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));
- fill: #FFFFFF;
- }
- </style>
- <script>
- const buttonEl =
- document.querySelector('#df-86e22d6b-a3d1-419c-9f8d-219652fb460c button.colab-df-convert');
- buttonEl.style.display =
- google.colab.kernel.accessAllowed ? 'block' : 'none';
- async function convertToInteractive(key) {
- const element = document.querySelector('#df-86e22d6b-a3d1-419c-9f8d-219652fb460c');
- const dataTable =
- await google.colab.kernel.invokeFunction('convertToInteractive',
- [key], {});
- if (!dataTable) return;
- const docLinkHtml = 'Like what you see? Visit the ' +
- '<a target="_blank" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'
- + ' to learn more about interactive tables.';
- element.innerHTML = '';
- dataTable['output_type'] = 'display_data';
- await google.colab.output.renderOutput(dataTable, element);
- const docLink = document.createElement('div');
- docLink.innerHTML = docLinkHtml;
- element.appendChild(docLink);
- }
- </script>
- </div>
- </div>
- <div class="sourceCode" id="cb76"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb76-1" title="1"><span class="im">import</span> plotly.express <span class="im">as</span> px</a>
- <a class="sourceLine" id="cb76-2" title="2"><span class="im">import</span> plotly.graph_objects <span class="im">as</span> go</a>
- <a class="sourceLine" id="cb76-3" title="3"></a>
- <a class="sourceLine" id="cb76-4" title="4">fig1 <span class="op">=</span> px.scatter_3d(dfp, x<span class="op">=</span><span class="st">'X'</span>, y<span class="op">=</span><span class="st">'Y'</span>, z<span class="op">=</span><span class="st">'Z'</span>, title<span class="op">=</span><span class="st">"Title"</span>, size<span class="op">=</span><span class="st">'size'</span>)</a>
- <a class="sourceLine" id="cb76-5" title="5">fig2 <span class="op">=</span> px.line_3d(dfl, x<span class="op">=</span><span class="st">'X'</span>, y<span class="op">=</span><span class="st">'Y'</span>, z<span class="op">=</span><span class="st">'Z'</span>)</a>
- <a class="sourceLine" id="cb76-6" title="6">fig3 <span class="op">=</span> go.Figure(data <span class="op">=</span> fig1.data <span class="op">+</span> fig2.data)</a>
- <a class="sourceLine" id="cb76-7" title="7">fig3.show()</a></code></pre></div>
- <html>
- <head>
- <meta charset="utf-8" />
- </head>
- <body>
- <div>
- <pre><code> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG"></script><script type="text/javascript">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: "STIX-Web"}});}</script> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
- <script src="https://cdn.plot.ly/plotly-2.8.3.min.js"></script> <div id="58dc9c1c-e06b-40fd-8759-1617a9c07e7a" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("58dc9c1c-e06b-40fd-8759-1617a9c07e7a")) { Plotly.newPlot( "58dc9c1c-e06b-40fd-8759-1617a9c07e7a", [{"hovertemplate":"X=%{x}<br>Y=%{y}<br>Z=%{z}<br>size=%{marker.size}<extra></extra>","legendgroup":"","marker":{"color":"#636efa","size":[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1],"sizemode":"area","sizeref":0.00025,"symbol":"circle"},"mode":"markers","name":"","scene":"scene","showlegend":false,"x":[-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0],"y":[-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0],"z":[5.0,4.6,4.2,3.8,3.4,3.0,2.6,2.2,1.8,1.4,1.0,4.6,4.2,3.8,3.4000000000000004,3.0,2.6,2.2,1.8,1.4000000000000001,1.0,0.6000000000000001,4.2,3.8000000000000003,3.4000000000000004,3.0,2.6,2.2,1.8000000000000003,1.4000000000000001,1.0000000000000002,0.6000000000000001,0.20000000000000018,3.8,3.4000000000000004,3.0,2.6,2.2,1.8,1.4,1.0,0.6000000000000001,0.19999999999999996,-0.19999999999999996,3.4,3.0,2.5999999999999996,2.2,1.7999999999999998,1.4,0.9999999999999999,0.5999999999999999,0.19999999999999996,-0.20000000000000018,-0.6000000000000001,3.0,2.6,2.2,1.8,1.4,1.0,0.6,0.19999999999999996,-0.19999999999999996,-0.6000000000000001,-1.0,2.6,2.2,1.7999999999999998,1.4,1.0,0.6,0.19999999999999996,-0.20000000000000007,-0.6,-1.0,-1.4,2.2,1.8,1.4,1.0,0.6,0.19999999999999996,-0.20000000000000007,-0.6000000000000001,-1.0,-1.4000000000000001,-1.8,1.8,1.4000000000000001,1.0,0.6000000000000001,0.20000000000000007,-0.19999999999999996,-0.6,-1.0,-1.4,-1.8,-2.2,1.4,1.0,0.5999999999999999,0.19999999999999996,-0.20000000000000007,-0.6000000000000001,-1.0,-1.4000000000000001,-1.8,-2.2,-2.6,1.0,0.6000000000000001,0.19999999999999996,-0.19999999999999996,-0.6,-1.0,-1.4,-1.8,-2.2,-2.6,-3.0],"type":"scatter3d"},{"hovertemplate":"X=%{x}<br>Y=%{y}<br>Z=%{z}<extra></extra>","legendgroup":"","line":{"color":"#636efa","dash":"solid"},"marker":{"symbol":"circle"},"mode":"lines","name":"","scene":"scene","showlegend":false,"x":[0,2],"y":[0,2],"z":[0,2],"type":"scatter3d"}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}}}, {"responsive": true} ).then(function(){</code></pre>
- <p>var gd = document.getElementById(‘58dc9c1c-e06b-40fd-8759-1617a9c07e7a’); var x = new MutationObserver(function (mutations, observer) {{ var display = window.getComputedStyle(gd).display; if (!display || display === ‘none’) {{ console.log([gd, ‘removed!’]); Plotly.purge(gd); observer.disconnect(); }} }});</p>
- <p>// Listen for the removal of the full notebook cells var notebookContainer = gd.closest(‘#notebook-container’); if (notebookContainer) {{ x.observe(notebookContainer, {childList: true}); }}</p>
- <p>// Listen for the clearing of the current output cell var outputEl = gd.closest(‘.output’); if (outputEl) {{ x.observe(outputEl, {childList: true}); }}</p>
- <pre><code> }) }; </script> </div></code></pre>
- </body>
- </html>
- <p>YES! In fact, <span class="math inline">$\bf A$</span> is the normal vector. Let’s test another case.</p>
- <p>We can do the same with Matplotlib, but we won’t be able to rotate the plot in our notebook. Just run the same code on your PC.</p>
- <div class="sourceCode" id="cb79"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb79-1" title="1"><span class="op">%</span>matplotlib inline</a></code></pre></div>
- <div class="sourceCode" id="cb80"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb80-1" title="1"><span class="im">from</span> IPython.core.interactiveshell <span class="im">import</span> InteractiveShell</a>
- <a class="sourceLine" id="cb80-2" title="2">InteractiveShell.ast_node_interactivity <span class="op">=</span> <span class="st">"all"</span></a></code></pre></div>
- <div class="sourceCode" id="cb81"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb81-1" title="1">plt.rc_context({ <span class="co"># Only needed for some dark modes</span></a>
- <a class="sourceLine" id="cb81-2" title="2"> <span class="st">'axes.edgecolor'</span>:<span class="st">'black'</span>, <span class="st">'xtick.color'</span>:<span class="st">'black'</span>,</a>
- <a class="sourceLine" id="cb81-3" title="3"> <span class="st">'ytick.color'</span>:<span class="st">'black'</span>, <span class="st">'figure.facecolor'</span>:<span class="st">'white'</span>})<span class="op">;</span></a></code></pre></div>
- <div class="sourceCode" id="cb82"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb82-1" title="1"><span class="im">from</span> mpl_toolkits.mplot3d <span class="im">import</span> axes3d</a>
- <a class="sourceLine" id="cb82-2" title="2"><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</a>
- <a class="sourceLine" id="cb82-3" title="3"><span class="im">from</span> matplotlib <span class="im">import</span> cm</a>
- <a class="sourceLine" id="cb82-4" title="4"><span class="im">import</span> numpy <span class="im">as</span> np</a>
- <a class="sourceLine" id="cb82-5" title="5"></a>
- <a class="sourceLine" id="cb82-6" title="6">fig <span class="op">=</span> plt.figure()</a>
- <a class="sourceLine" id="cb82-7" title="7">ax <span class="op">=</span> fig.add_subplot(<span class="dv">111</span>, projection<span class="op">=</span><span class="st">'3d'</span>)</a>
- <a class="sourceLine" id="cb82-8" title="8"></a>
- <a class="sourceLine" id="cb82-9" title="9">xy <span class="op">=</span> np.mgrid[<span class="op">-</span><span class="dv">2</span>:<span class="dv">2</span>:21j, <span class="dv">-2</span>:<span class="dv">2</span>:21j]</a>
- <a class="sourceLine" id="cb82-10" title="10">z <span class="op">=</span> np.zeros((<span class="dv">21</span>, <span class="dv">21</span>))</a>
- <a class="sourceLine" id="cb82-11" title="11">x <span class="op">=</span> xy[<span class="dv">0</span>]<span class="op">;</span> y <span class="op">=</span> xy[<span class="dv">1</span>]<span class="op">;</span> z <span class="op">=</span> <span class="dv">1</span> <span class="op">-</span> x <span class="op">-</span> y</a>
- <a class="sourceLine" id="cb82-12" title="12">a <span class="op">=</span> [<span class="dv">0</span>, <span class="dv">1</span>]<span class="op">;</span> b <span class="op">=</span> [<span class="dv">0</span>, <span class="dv">1</span>]<span class="op">;</span> c <span class="op">=</span> [<span class="dv">0</span>, <span class="dv">1</span>]</a>
- <a class="sourceLine" id="cb82-13" title="13"></a>
- <a class="sourceLine" id="cb82-14" title="14">ax.plot_surface(x, y, z, cmap<span class="op">=</span>cm.coolwarm, linewidth<span class="op">=</span><span class="dv">0</span>, alpha<span class="op">=</span>.<span class="dv">7</span>)</a>
- <a class="sourceLine" id="cb82-15" title="15">ax.plot(a, b, c, color<span class="op">=</span><span class="st">"blue"</span>)</a>
- <a class="sourceLine" id="cb82-16" title="16"></a>
- <a class="sourceLine" id="cb82-17" title="17">ax.set_title(<span class="st">'A Plane in 3D Defined by a Normal Vector'</span>)</a>
- <a class="sourceLine" id="cb82-18" title="18">ax.set_xlabel(<span class="st">'X'</span>)<span class="op">;</span> ax.set_ylabel(<span class="st">'Y'</span>)<span class="op">;</span> ax.set_zlabel(<span class="st">'Z'</span>)</a>
- <a class="sourceLine" id="cb82-19" title="19">ax.set_xlim(<span class="op">-</span><span class="dv">2</span>, <span class="dv">2</span>)<span class="op">;</span> ax.set_ylim(<span class="op">-</span><span class="dv">2</span>, <span class="dv">2</span>)<span class="op">;</span> ax.set_zlim(<span class="op">-</span><span class="dv">2</span>, <span class="dv">2</span>)</a>
- <a class="sourceLine" id="cb82-20" title="20"><span class="co"># this next line doesn't work in colab for some reason</span></a>
- <a class="sourceLine" id="cb82-21" title="21"><span class="co"># ax.set_box_aspect((np.ptp(x), np.ptp(y), np.ptp(x)))</span></a>
- <a class="sourceLine" id="cb82-22" title="22">ax.tick_params(axis<span class="op">=</span><span class="st">'both'</span>, which<span class="op">=</span><span class="st">'major'</span>, labelsize<span class="op">=</span><span class="dv">6</span>)</a>
- <a class="sourceLine" id="cb82-23" title="23"></a>
- <a class="sourceLine" id="cb82-24" title="24">plt.show()<span class="op">;</span></a></code></pre></div>
- <figure>
- <img src="Vectors_And_Spaces_files/Vectors_And_Spaces_115_0.png" alt="png" /><figcaption>png</figcaption>
- </figure>
- <p>Let’s do another simple and obvious equation of a plane. <br><br> <br /><span class="math display">$$\begin{bmatrix}
- 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1
- \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} =
- \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$</span><br /> <br><br> which yields, <br><br> <br /><span class="math display">$$ \bf A = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $$</span><br /> <br><br> Now we create our grid of points in the <span class="math inline"><em>x</em></span> - <span class="math inline"><em>y</em></span> plane, and our equation for <span class="math inline"><em>z</em></span> simplifies to <br><br> <br /><span class="math display"><em>z</em> = (1 − 0<em>x</em> − 0<em>y</em>)</span><br /> <br><br> Let’s plot this in 3D.</p>
- <div class="sourceCode" id="cb83"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb83-1" title="1">xyz <span class="op">=</span> []</a>
- <a class="sourceLine" id="cb83-2" title="2"><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span><span class="dv">20</span>,<span class="dv">21</span>,<span class="dv">2</span>):</a>
- <a class="sourceLine" id="cb83-3" title="3"> <span class="cf">for</span> j <span class="kw">in</span> <span class="bu">range</span>(<span class="op">-</span><span class="dv">20</span>,<span class="dv">21</span>,<span class="dv">2</span>):</a>
- <a class="sourceLine" id="cb83-4" title="4"> x <span class="op">=</span> i<span class="op">/</span><span class="dv">10</span></a>
- <a class="sourceLine" id="cb83-5" title="5"> y <span class="op">=</span> j<span class="op">/</span><span class="dv">10</span></a>
- <a class="sourceLine" id="cb83-6" title="6"> z <span class="op">=</span> <span class="dv">1</span> <span class="op">-</span> <span class="dv">0</span><span class="op">*</span>x <span class="op">-</span> <span class="dv">0</span><span class="op">*</span>y</a>
- <a class="sourceLine" id="cb83-7" title="7"> xyz.append([x, y, z, <span class="fl">0.1</span>])</a>
- <a class="sourceLine" id="cb83-8" title="8"></a>
- <a class="sourceLine" id="cb83-9" title="9">dfp <span class="op">=</span> pd.DataFrame(data<span class="op">=</span>xyz, columns<span class="op">=</span>[<span class="st">'X'</span>, <span class="st">'Y'</span>, <span class="st">'Z'</span>, <span class="st">'size'</span>])</a>
- <a class="sourceLine" id="cb83-10" title="10"></a>
- <a class="sourceLine" id="cb83-11" title="11">line <span class="op">=</span> [[<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>], [<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">2</span>]]</a>
- <a class="sourceLine" id="cb83-12" title="12">dfl <span class="op">=</span> pd.DataFrame(data<span class="op">=</span>line, columns<span class="op">=</span>[<span class="st">'X'</span>, <span class="st">'Y'</span>, <span class="st">'Z'</span>])</a>
- <a class="sourceLine" id="cb83-13" title="13"></a>
- <a class="sourceLine" id="cb83-14" title="14">fig1 <span class="op">=</span> px.scatter_3d(dfp, x<span class="op">=</span><span class="st">'X'</span>, y<span class="op">=</span><span class="st">'Y'</span>, z<span class="op">=</span><span class="st">'Z'</span>, title<span class="op">=</span><span class="st">"Title"</span>, size<span class="op">=</span><span class="st">'size'</span>)</a>
- <a class="sourceLine" id="cb83-15" title="15">fig2 <span class="op">=</span> px.line_3d(dfl, x<span class="op">=</span><span class="st">'X'</span>, y<span class="op">=</span><span class="st">'Y'</span>, z<span class="op">=</span><span class="st">'Z'</span>)</a>
- <a class="sourceLine" id="cb83-16" title="16">fig3 <span class="op">=</span> go.Figure(data <span class="op">=</span> fig1.data <span class="op">+</span> fig2.data)</a>
- <a class="sourceLine" id="cb83-17" title="17">fig3.show()</a></code></pre></div>
- <html>
- <head>
- <meta charset="utf-8" />
- </head>
- <body>
- <div>
- <pre><code> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG"></script><script type="text/javascript">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: "STIX-Web"}});}</script> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
- <script src="https://cdn.plot.ly/plotly-2.8.3.min.js"></script> <div id="88fd770c-3552-4e86-b28e-572c93c6a97d" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("88fd770c-3552-4e86-b28e-572c93c6a97d")) { Plotly.newPlot( "88fd770c-3552-4e86-b28e-572c93c6a97d", [{"hovertemplate":"X=%{x}<br>Y=%{y}<br>Z=%{z}<br>size=%{marker.size}<extra></extra>","legendgroup":"","marker":{"color":"#636efa","size":[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1],"sizemode":"area","sizeref":0.00025,"symbol":"circle"},"mode":"markers","name":"","scene":"scene","showlegend":false,"x":[-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-2.0,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.6,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-1.2,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.8,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,-0.4,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.2,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0],"y":[-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,-2.0,-1.6,-1.2,-0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0],"z":[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0],"type":"scatter3d"},{"hovertemplate":"X=%{x}<br>Y=%{y}<br>Z=%{z}<extra></extra>","legendgroup":"","line":{"color":"#636efa","dash":"solid"},"marker":{"symbol":"circle"},"mode":"lines","name":"","scene":"scene","showlegend":false,"x":[0,0],"y":[0,0],"z":[0,2],"type":"scatter3d"}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}}}, {"responsive": true} ).then(function(){</code></pre>
- <p>var gd = document.getElementById(‘88fd770c-3552-4e86-b28e-572c93c6a97d’); var x = new MutationObserver(function (mutations, observer) {{ var display = window.getComputedStyle(gd).display; if (!display || display === ‘none’) {{ console.log([gd, ‘removed!’]); Plotly.purge(gd); observer.disconnect(); }} }});</p>
- <p>// Listen for the removal of the full notebook cells var notebookContainer = gd.closest(‘#notebook-container’); if (notebookContainer) {{ x.observe(notebookContainer, {childList: true}); }}</p>
- <p>// Listen for the clearing of the current output cell var outputEl = gd.closest(‘.output’); if (outputEl) {{ x.observe(outputEl, {childList: true}); }}</p>
- <pre><code> }) }; </script> </div></code></pre>
- </body>
- </html>
- ##
- <center>
- The 3D Cross Product - A Visual Method
- </center>
- <p><br /><span class="math display">$$ \vec a = \vec x \times \vec y = \begin{matrix}
- & & - x_3 y_2 \hat i & - x_1 y_3 \hat j & - x_2 y_1 \hat k \\
- x_1 & y_1 & \hat i & x_1 & y_1 \\
- x_2 & y_2 & \hat j & x_2 & y_2 \\
- x_3 & y_3 & \hat k & x_3 & y_3 \\
- & & + x_1 y_2 \hat k & + x_3 y_1 \hat j & + x_2 y_3 \hat i \\
- \end{matrix} $$</span><br /> <br> <br /><span class="math display"><em>a⃗</em> = <em>x⃗</em> × <em>y⃗</em> = (<em>x</em><sub>2</sub><em>y</em><sub>3</sub> − <em>x</em><sub>3</sub><em>y</em><sub>2</sub>)<em>î</em> + (<em>x</em><sub>3</sub><em>y</em><sub>1</sub> − <em>x</em><sub>1</sub><em>y</em><sub>3</sub>)<em>ĵ</em> + (<em>x</em><sub>1</sub><em>y</em><sub>2</sub> − <em>x</em><sub>2</sub><em>y</em><sub>1</sub>)<em>k̂</em></span><br /></p>
- <h2 id="a-simplistic-summary-of-dot-and-cross-products">A Simplistic Summary of Dot and Cross Products</h2>
- <p><br /><span class="math display"><em>x</em> ⋅ <em>y</em> = ‖<em>x</em>‖‖<em>y</em>‖<em>c</em><em>o</em><em>s</em>(<em>θ</em>)</span><br /> <br /><span class="math display">‖<em>x</em> × <em>y</em>‖ = ‖<em>x</em>‖‖<em>y</em>‖<em>s</em><em>i</em><em>n</em>(<em>θ</em>)</span><br /></p>
- <h1 id="stuff-for-later">Stuff For Later</h1>
- <h2 id="a-3d-example">A 3D Example</h2>
- <div class="sourceCode" id="cb86"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb86-1" title="1"><span class="im">import</span> plotly.express <span class="im">as</span> px</a>
- <a class="sourceLine" id="cb86-2" title="2"></a>
- <a class="sourceLine" id="cb86-3" title="3"><span class="co"># Some New Stuff For Arrows</span></a>
- <a class="sourceLine" id="cb86-4" title="4"></a>
- <a class="sourceLine" id="cb86-5" title="5">fig <span class="op">=</span> px.scatter_3d(fake_df, x<span class="op">=</span><span class="st">'X1'</span>, y<span class="op">=</span><span class="st">'X2'</span>, z<span class="op">=</span><span class="st">'Y'</span>)</a>
- <a class="sourceLine" id="cb86-6" title="6">fig.show()</a></code></pre></div>
- </body>
- </html>
|