Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

rmv_dim.py 7.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  1. """
  2. This is the first ablation study, of removing a state dimension of the z-plane during testing.
  3. """
  4. import numpy as np
  5. import pandas as pd
  6. import tensorflow as tf
  7. from keras.layers import Dense
  8. from sklearn.preprocessing import MinMaxScaler
  9. import dagshub
  10. import mlflow
  11. import mlflow.keras
  12. import pickle
  13. mlflow.set_tracking_uri('https://dagshub.com/ML-Purdue/hackathonf23-Stacks.mlflow')
  14. dagshub.init(repo_owner='ML-Purdue', repo_name='hackathonf23-Stacks', mlflow=True)
  15. def get_or_create_experiment_id(name):
  16. exp = mlflow.get_experiment_by_name(name)
  17. if exp is None:
  18. exp_id = mlflow.create_experiment(name)
  19. return exp_id
  20. return exp.experiment_id
  21. class MaxEntIRLReduced:
  22. def __init__(self, state_dim):
  23. self.state_dim = state_dim
  24. self.model = self._create_irl_model()
  25. def _create_irl_model(self):
  26. model = tf.keras.Sequential([
  27. Dense(self.state_dim, input_shape=(self.state_dim,), activation='relu'),
  28. Dense(4096, activation='relu'),
  29. Dense(2048, activation='relu'),
  30. Dense(self.state_dim, activation='linear')
  31. ])
  32. return model
  33. def generateHumanTrajectories(self, num_trajectories, trajectory_length):
  34. human_trajectories = []
  35. for _ in range(num_trajectories):
  36. trajectory = []
  37. state = np.zeros(self.state_dim)
  38. for _ in range(trajectory_length):
  39. direction_probabilities = self._generate_direction_probabilities() # Get direction probabilities
  40. action_coefficients = np.random.choice([-1, 0, 1], p=direction_probabilities)
  41. action = action_coefficients * 0.1
  42. new_state = state[:2] + action # Reduced state by removing the z-direction
  43. trajectory.append((state, action))
  44. state = np.append(new_state, 0) # Pad the state to the original dimension
  45. human_trajectories.append(trajectory)
  46. return human_trajectories
  47. def _generate_direction_probabilities(self):
  48. probabilities = np.random.dirichlet(np.ones(self.state_dim) * 0.1)
  49. return probabilities
  50. def loadDataset(self, file_path):
  51. data = pd.read_csv(file_path) # Load CSV data
  52. scaler = MinMaxScaler()
  53. columns_to_normalize = ['position x [mm]', 'position y [mm]', 'velocity [mm/s]']
  54. data = data[['position x [mm]', 'position y [mm]', 'velocity [mm/s]']]
  55. data[columns_to_normalize] = scaler.fit_transform(data[columns_to_normalize])
  56. return data
  57. def train_irl_with_dataset(self, data, lr=0.001, epochs=3):
  58. state_dim = self.state_dim
  59. optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
  60. # Extract relevant columns from the loaded dataset
  61. positions = data[['position x [mm]', 'position y [mm]']].values # Removed z-direction
  62. velocities = data['velocity [mm/s]'].values
  63. mlflow.tensorflow.autolog()
  64. with mlflow.start_run(experiment_id=get_or_create_experiment_id("Ablation 1: Removed Dimension")):
  65. for epoch in range(epochs):
  66. total_loss = 0
  67. state_frequencies = self._calculate_state_frequencies(positions)
  68. for idx in range(len(positions)):
  69. state = positions[idx]
  70. velocity = velocities[idx]
  71. with tf.GradientTape() as tape:
  72. preferences = self.model(state[np.newaxis, :])
  73. prob_human = tf.nn.softmax(preferences)
  74. # Define losses
  75. max_entropy_loss = -tf.reduce_sum(prob_human * tf.math.log(prob_human + 1e-8), axis=1)
  76. alignment_loss = -tf.reduce_sum(state_frequencies * tf.math.log(prob_human + 1e-8), axis=1)
  77. maxent_irl_objective = max_entropy_loss + alignment_loss
  78. # Compute the gradients
  79. grads = tape.gradient(maxent_irl_objective, self.model.trainable_variables)
  80. optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
  81. total_loss += tf.reduce_sum(maxent_irl_objective) # Accumulate the total loss
  82. avg_loss = total_loss / len(positions)
  83. mlflow.log_metric(f"loss", avg_loss, step=epoch)
  84. print(f"Epoch {epoch + 1}/{epochs}, MaxEnt IRL Loss: {avg_loss}")
  85. def train_irl(self, human_trajectories=None, data=None, use_dataset=False, lr=0.001, epochs=3):
  86. if use_dataset and data is not None:
  87. # Train using the loaded dataset
  88. self.train_irl_with_dataset(data, lr=lr, epochs=epochs)
  89. else:
  90. # Train using the generative function
  91. if human_trajectories is None:
  92. human_trajectories = self.generateHumanTrajectories(num_trajectories, trajectory_length)
  93. self._train_irl_generative(human_trajectories, lr=lr, epochs=epochs)
  94. def _train_irl_generative(self, human_trajectories, lr=0.001, epochs=3):
  95. trajectory_length = len(human_trajectories[0])
  96. optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
  97. for epoch in range(epochs):
  98. total_loss = 0
  99. state_frequencies = self._calculate_state_frequencies(human_trajectories, trajectory_length)
  100. for trajectory in human_trajectories:
  101. for state, _ in trajectory:
  102. with tf.GradientTape() as tape:
  103. preferences = self.model(state[np.newaxis, :])
  104. prob_human = tf.nn.softmax(preferences)
  105. # Inside the training loop:
  106. max_entropy_loss = -tf.reduce_sum(prob_human * tf.math.log(prob_human + 1e-8), axis=1)
  107. alignment_loss = -tf.reduce_sum(state_frequencies * tf.math.log(prob_human + 1e-8), axis=1)
  108. maxent_irl_objective = max_entropy_loss + alignment_loss
  109. grads = tape.gradient(maxent_irl_objective, self.model.trainable_variables)
  110. optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
  111. total_loss += maxent_irl_objective
  112. avg_loss = total_loss / (len(human_trajectories) * trajectory_length)
  113. print(f"Epoch {epoch + 1}/{epochs}, MaxEnt IRL Loss: {avg_loss}")
  114. def _calculate_state_frequencies(self, positions):
  115. state_counts = np.sum(positions, axis=0)
  116. state_frequencies = state_counts / (len(positions) * self.state_dim)
  117. return state_frequencies
  118. def save_model(self, file_path):
  119. model_config = self.model.get_config()
  120. with open(file_path, 'wb') as f:
  121. pickle.dump(model_config, f)
  122. @classmethod
  123. def load_model(cls, file_path, state_dim):
  124. with open(file_path, 'rb') as f:
  125. model_config = pickle.load(f)
  126. irl_instance = cls(state_dim)
  127. irl_instance.model = tf.keras.Sequential.from_config(model_config)
  128. return irl_instance
  129. # Indicate test completion status
  130. state_dim = 2 # Dimension of the state space
  131. irl = MaxEntIRLReduced(state_dim)
  132. num_trajectories = 100
  133. trajectory_length = 20
  134. # Load the dataset
  135. file_path = '/Users/vinay/Desktop/Computer_Science_Projects/ReScience/hackathonf23-Stacks/data/train.csv' # Replace with the actual file path
  136. data = irl.loadDataset(file_path)
  137. irl.train_irl(data=data, use_dataset=True, lr=0.001, epochs=3)
  138. irl.save_model('/Users/vinay/Desktop/Computer_Science_Projects/ReScience/hackathonf23-Stacks/models/rmv_dim_model.pkl')
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...