1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
- #!/usr/bin/env python
- import os
- import click
- from pathlib import Path
- import json
- import pickle
- import numpy as np
- from tqdm import tqdm
- from collections import defaultdict
- from torch.utils.data import Dataset
- from sklearn.ensemble import RandomForestClassifier
- from sklearn.metrics import (
- balanced_accuracy_score,
- accuracy_score,
- )
- class SmokeDataset(Dataset):
- def __init__(self, dates, X, y, distance_bins_km, density_categories,
- sequence_length, look_ahead):
- self.dates = dates
- self.X = X
- self.y = y
- self.distance_bins_km = distance_bins_km
- self.density_categories = density_categories
- self.sequence_length = sequence_length
- self.look_ahead = look_ahead
- self._len = max(0, len(X) - (sequence_length + look_ahead) + 1)
- def __len__(self):
- return self._len
- def __getitem__(self, i):
- midpoint = (i + self.sequence_length)
- xx = self.X[i : midpoint].ravel()
- yy = self.y[midpoint : midpoint + self.look_ahead].ravel()
- return xx, yy
- def get_dates(self, i):
- midpoint = (i + self.sequence_length)
- dx = self.dates[i : midpoint].ravel()
- dy = self.dates[midpoint : midpoint + self.look_ahead].ravel()
- return dx, dy
- def load_training_config(configfile):
- with open(configfile, 'r') as f:
- return json.load(f)
- def load_datasets(datafile, config):
- data = np.load(datafile)
- dtype = 'datetime64[D]'
- train_range = np.array(config['train_date_range'], dtype=dtype)
- val_range = np.array(config['validation_date_range'], dtype=dtype)
- test_range = np.array(config['test_date_range'], dtype=dtype)
- dates = data['dates']
- dist_bins = data['distance_bins_km']
- density_categories = data['density_categories']
- get_idx = lambda d_range: np.logical_and(
- d_range[0] <= dates,
- dates <= d_range[1]
- )
- idx = {
- 'train': get_idx(train_range),
- 'validation': get_idx(val_range),
- 'test': get_idx(test_range),
- }
- datasets = []
- for Xi, yi in zip(data['features'], data['densities']):
- datasets.append({
- subset: SmokeDataset(
- dates[jj], Xi[jj], yi[jj],
- dist_bins, density_categories,
- config['sequence_length'],
- config['look_ahead'],
- )
- for subset, jj in idx.items()
- })
- site_info = {
- 'latitudes': data['latitudes'],
- 'longitudes': data['longitudes'],
- 'names': data['names'],
- }
- return site_info, datasets
- def train_eval_classifier(dataset):
- datasets = {
- dname: tuple(map(np.vstack, zip(*
- [dataset[dname][i] for i in range(len(dataset[dname]))]
- )))
- for dname in ('train', 'validation', 'test')
- }
- cls = RandomForestClassifier()
- cls.fit(*datasets['train'])
- statistics = defaultdict(dict)
- for dname, (X, y) in datasets.items():
- print(f'Evaluationg {dname}')
- ypred = cls.predict(X)
- statistics[dname]['balanced_accuracy'] = [
- balanced_accuracy_score(y[:, i], ypred[:, i], adjusted=True)
- for i in range(y.shape[1])
- ]
- statistics[dname]['smoke_accuracy'] = [
- balanced_accuracy_score(y[:, i] > 0, ypred[:, i] > 0, adjusted=True)
- for i in range(y.shape[1])
- ]
- print(statistics)
- return cls, dict(statistics)
- @click.command()
- @click.argument('datafile', type=click.Path(
- path_type=Path, exists=True
- ))
- @click.argument('configfile', type=click.Path(
- path_type=Path, exists=True
- ))
- @click.argument('outputfile', type=click.Path(
- path_type=Path
- ))
- def main(datafile, configfile, outputfile):
- config = load_training_config(configfile)
- site_info, datasets = load_datasets(datafile, config)
- result = {
- 'configuration': config,
- 'classifiers': [],
- 'statistics': [],
- }
- for name, dset in zip(site_info['names'], datasets):
- print(f'Training classifier for {name}...')
- cls, statistics = train_eval_classifier(dset)
- result['classifiers'].append(cls)
- result['statistics'].append(statistics)
- with open(outputfile, 'wb') as f:
- pickle.dump(result, f)
- if __name__ == '__main__':
- main()
|