Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

epa_seq2seq.py 6.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  1. #!/usr/bin/env python
  2. """
  3. EPA Sequence-to-Sequence Model
  4. see https://sladewinter.medium.com/video-frame-prediction-using-convlstm-network-in-pytorch-b5210a6ce582
  5. """
  6. import os
  7. import json
  8. import click
  9. import numpy as np
  10. import xarray as xr
  11. from tqdm import tqdm
  12. import torch
  13. from torch.utils.data import Dataset
  14. from torch.utils.data import DataLoader
  15. import dagshub
  16. import mlflow
  17. from epa_seq2seq_model import EpaSeq2Seq
  18. dagshub.init("aqacf-ml-main", "ML-Purdue")
  19. class EpaDataset(Dataset):
  20. def __init__(self, dataset, window_size, in_channels, out_channels):
  21. self.dataset = dataset
  22. self.X = self.dataset[in_channels]
  23. self.y = self.dataset[out_channels]
  24. self.times = dataset.time.values
  25. self.window_size = window_size
  26. self._n = len(self.times) - (self.window_size - 1)
  27. @property
  28. def frame_size(self):
  29. return (
  30. len(self.dataset.lat.values),
  31. len(self.dataset.lon.values),
  32. )
  33. def __len__(self):
  34. return self._n
  35. def get_time(self, i):
  36. return self.times[i: i + self.window_size]
  37. def __getitem__(self, i):
  38. X = self.X.isel(time=slice(i, i + self.window_size))
  39. y = self.y.isel(time=slice(i, i + self.window_size))
  40. X = np.transpose(
  41. np.stack([X[v] for v in X.data_vars]),
  42. (0, 1, 2, 3)
  43. )
  44. y = np.transpose(
  45. np.stack([y[v] for v in y.data_vars]),
  46. (0, 1, 2, 3)
  47. )
  48. return X, y
  49. def mse_nan_loss(output, target):
  50. mask = ~torch.isnan(target)
  51. sqe = (target[mask] - output[mask])**2
  52. return sqe.mean()
  53. def train_model(data_loader, model, loss_function, optimizer):
  54. num_batches = len(data_loader)
  55. total_loss = 0
  56. model.train()
  57. n = 0
  58. for X, y in tqdm(data_loader, 'Training', total=num_batches):
  59. X, y = X.cuda(), y.cuda()
  60. output = model(X)
  61. loss = loss_function(output, y)
  62. optimizer.zero_grad()
  63. loss.backward()
  64. optimizer.step()
  65. total_loss += loss.item()
  66. n += 1
  67. #if n > 2: break
  68. #avg_loss = total_loss / num_batches
  69. avg_loss = total_loss / n
  70. rmse = np.sqrt(avg_loss)
  71. print(f"Train loss: {rmse}")
  72. return avg_loss
  73. def eval_model(data_loader, model, loss_function):
  74. num_batches = len(data_loader)
  75. total_loss = 0
  76. model.eval()
  77. with torch.no_grad():
  78. n = 0
  79. for X, y in tqdm(data_loader, 'Evaluating', total=num_batches):
  80. X, y = X.cuda(), y.cuda()
  81. output = model(X)
  82. total_loss += loss_function(output, y).item()
  83. n += 1
  84. #if n > 2: break
  85. #avg_loss = total_loss / num_batches
  86. avg_loss = total_loss / n
  87. rmse = np.sqrt(avg_loss)
  88. print(f"Validation loss: {rmse}")
  89. return avg_loss
  90. def save_state(outputdir, config, epoch, model, optimizer,
  91. train_loss, validation_loss, loss_function_name):
  92. state_dict = {
  93. 'epoch': epoch,
  94. 'model_state_dict': model.state_dict(),
  95. 'optimizer_state_dict': optimizer.state_dict(),
  96. 'train_loss': train_loss,
  97. 'validation_loss': validation_loss,
  98. 'loss_function_name': loss_function_name,
  99. 'config': config,
  100. }
  101. path = os.path.join(outputdir, f'state_epoch_{epoch:05d}.pt')
  102. torch.save(state_dict, path)
  103. @click.command()
  104. @click.argument('configfile')
  105. @click.argument('dropoutconfigfile')
  106. @click.argument('datafile')
  107. @click.argument('outputdir')
  108. def main(configfile, dropoutconfigfile, datafile, outputdir):
  109. with open(configfile, 'r') as f:
  110. config = json.load(f)
  111. checkpoint_path = r"C:\Users\Michael\aqacf-ml-main\data\train_output\train_transfer_step1_trial1\state_epoch_00020.pt"
  112. window_size = config['sequence_length']
  113. window_size = 1
  114. in_channels = config['in_channels']
  115. out_channels = config['out_channels']
  116. batch_size = config['batch_size']
  117. epochs = config['epochs']
  118. learning_rate = config['learning_rate']
  119. model_params = config['model_params']
  120. with open(dropoutconfigfile, 'r') as f:
  121. dropoutConfig = json.load(f)
  122. dataset_names = ('train', 'validation', 'test')
  123. datasets = {}
  124. with xr.open_zarr(datafile) as ds:
  125. for s in dataset_names:
  126. ds_sub = ds.sel(time=slice(*config[f'{s}_date_range']))
  127. if s == 'train':
  128. for key, dropouts in dropoutConfig.items():
  129. try:
  130. ds_sub['PM25'].loc[:, dropouts[0], dropouts[1]] = np.nan
  131. print(f"dropped {dropouts[0]}, {dropouts[1]}")
  132. except KeyError:
  133. print(f"{dropouts[0]}, {dropouts[1]} not in bounds")
  134. datasets[s] = EpaDataset(ds_sub, window_size, in_channels, out_channels)
  135. loaders = {
  136. k: DataLoader(v, batch_size=batch_size, shuffle=True)
  137. for k, v in datasets.items()
  138. }
  139. model = EpaSeq2Seq(
  140. in_channels=len(in_channels),
  141. out_channels=len(out_channels),
  142. frame_size=datasets['train'].frame_size,
  143. **model_params
  144. ).to(model_params['device'])
  145. optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
  146. loss_function = mse_nan_loss
  147. if checkpoint_path and os.path.exists(checkpoint_path):
  148. checkpoint = torch.load(checkpoint_path, map_location=model_params['device'])
  149. model.load_state_dict(checkpoint['model_state_dict'])
  150. optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  151. with mlflow.start_run():
  152. for ix_epoch in range(epochs + 1):
  153. if ix_epoch == 0:
  154. print("Untrained model\n--------")
  155. train_loss = eval_model(loaders['train'], model, loss_function)
  156. else:
  157. print(f"Epoch {ix_epoch}\n---------")
  158. train_loss = train_model(loaders['train'], model, loss_function, optimizer=optimizer)
  159. validation_loss = eval_model(loaders['validation'], model, loss_function)
  160. save_state(
  161. outputdir, config,
  162. ix_epoch, model, optimizer, train_loss, validation_loss,
  163. loss_function.__name__
  164. )
  165. mlflow.log_metrics({'train_loss': train_loss, 'validation_loss': validation_loss}, step=ix_epoch)
  166. print()
  167. if __name__ == '__main__':
  168. main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...