Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

5kLog.log 469 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
  1. PS C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes> python -m src.model.train
  2. Using cuda
  3. Data loaded
  4. Model created
  5. Optimizer and loss created
  6. Epoch 1/10
  7. Batch: 0
  8. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  9. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  10. Batch Loss: 0.9671375751495361
  11. Batch: 1
  12. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  13. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  14. Batch Loss: 0.3357730805873871
  15. Batch: 2
  16. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  17. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  18. Batch Loss: 0.7758014798164368
  19. Batch: 3
  20. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  21. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  22. Batch Loss: 0.10815244913101196
  23. Batch: 4
  24. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  25. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  26. Batch Loss: 0.36683541536331177
  27. Batch: 5
  28. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  29. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  30. Batch Loss: 0.604379415512085
  31. Batch: 6
  32. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  33. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  34. Batch Loss: 0.8250358700752258
  35. Batch: 7
  36. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  37. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  38. Batch Loss: 0.702534556388855
  39. Batch: 8
  40. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  41. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  42. Batch Loss: 0.875644326210022
  43. Batch: 9
  44. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  45. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  46. Batch Loss: 0.5796182155609131
  47. Batch: 10
  48. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  49. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  50. Batch Loss: 0.348760724067688
  51. Batch: 11
  52. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  53. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  54. Batch Loss: 0.510147213935852
  55. Batch: 12
  56. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  57. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  58. Batch Loss: 1.627685546875
  59. Batch: 13
  60. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  61. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  62. Batch Loss: 0.312531054019928
  63. Batch: 14
  64. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  65. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  66. Batch Loss: 1.4717888832092285
  67. Batch: 15
  68. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  69. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  70. Batch Loss: 0.9486780166625977
  71. Batch: 16
  72. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  73. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  74. Batch Loss: 0.5000591278076172
  75. Batch: 17
  76. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  77. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  78. Batch Loss: 0.8765230178833008
  79. Batch: 18
  80. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  81. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  82. Batch Loss: 0.799582839012146
  83. Batch: 19
  84. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  85. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  86. Batch Loss: 0.8773936033248901
  87. Batch: 20
  88. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  89. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  90. Batch Loss: 0.9767993688583374
  91. Batch: 21
  92. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  93. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  94. Batch Loss: 0.7391752004623413
  95. Batch: 22
  96. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  97. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  98. Batch Loss: 0.06409857422113419
  99. Batch: 23
  100. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  101. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  102. Batch Loss: 0.7439115643501282
  103. Batch: 24
  104. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  105. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  106. Batch Loss: 0.21947161853313446
  107. Batch: 25
  108. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  109. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  110. Batch Loss: 0.6262499094009399
  111. Batch: 26
  112. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  113. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  114. Batch Loss: 0.45701873302459717
  115. Batch: 27
  116. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  117. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  118. Batch Loss: 1.185937762260437
  119. Batch: 28
  120. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  121. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  122. Batch Loss: 0.8371411561965942
  123. Batch: 29
  124. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  125. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  126. Batch Loss: 0.6778520941734314
  127. Batch: 30
  128. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  129. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  130. Batch Loss: 0.14422258734703064
  131. Batch: 31
  132. Error
  133. Batch: 32
  134. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  135. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  136. Batch Loss: 0.05408451333642006
  137. Batch: 33
  138. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  139. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  140. Batch Loss: 0.3011379539966583
  141. Batch: 34
  142. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  143. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  144. Batch Loss: 0.9189160466194153
  145. Batch: 35
  146. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  147. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  148. Batch Loss: 0.6175788640975952
  149. Batch: 36
  150. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  151. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  152. Batch Loss: 1.606583833694458
  153. Batch: 37
  154. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  155. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  156. Batch Loss: 0.0
  157. Batch: 38
  158. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  159. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  160. Batch Loss: 0.9083439111709595
  161. Batch: 39
  162. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  163. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  164. Batch Loss: 0.28578275442123413
  165. Batch: 40
  166. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  167. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  168. Batch Loss: 0.2884284257888794
  169. Batch: 41
  170. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  171. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  172. Batch Loss: 0.8158679604530334
  173. Batch: 42
  174. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  175. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  176. Batch Loss: 0.9501778483390808
  177. Batch: 43
  178. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  179. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  180. Batch Loss: 0.5349695682525635
  181. Batch: 44
  182. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  183. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  184. Batch Loss: 0.627077043056488
  185. Batch: 45
  186. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  187. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  188. Batch Loss: 0.7644076943397522
  189. Batch: 46
  190. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  191. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  192. Batch Loss: 0.7351073026657104
  193. Batch: 47
  194. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  195. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  196. Batch Loss: 0.14422348141670227
  197. Batch: 48
  198. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  199. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  200. Batch Loss: 0.13329266011714935
  201. Batch: 49
  202. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  203. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  204. Batch Loss: 1.3382028341293335
  205. Batch: 50
  206. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  207. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  208. Batch Loss: 0.856562614440918
  209. Batch: 51
  210. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  211. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  212. Batch Loss: 0.9715302586555481
  213. Batch: 52
  214. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  215. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  216. Batch Loss: 1.6213864088058472
  217. Batch: 53
  218. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  219. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  220. Batch Loss: 0.4195018708705902
  221. Batch: 54
  222. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  223. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  224. Batch Loss: 0.30492836236953735
  225. Batch: 55
  226. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  227. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  228. Batch Loss: 0.0
  229. Batch: 56
  230. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  231. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  232. Batch Loss: 0.7306706309318542
  233. Batch: 57
  234. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  235. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  236. Batch Loss: 1.1934454441070557
  237. Batch: 58
  238. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  239. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  240. Batch Loss: 1.1315622329711914
  241. Batch: 59
  242. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  243. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  244. Batch Loss: 0.31865227222442627
  245. Batch: 60
  246. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  247. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  248. Batch Loss: 0.6776185035705566
  249. Batch: 61
  250. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  251. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  252. Batch Loss: 0.5712005496025085
  253. Batch: 62
  254. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  255. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  256. Batch Loss: 0.5283052921295166
  257. Batch: 63
  258. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  259. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  260. Batch Loss: 1.302706241607666
  261. Batch: 64
  262. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  263. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  264. Batch Loss: 0.5152894258499146
  265. Batch: 65
  266. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  267. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  268. Batch Loss: 0.18344828486442566
  269. Batch: 66
  270. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  271. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  272. Batch Loss: 0.10180754214525223
  273. Batch: 67
  274. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  275. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  276. Batch Loss: 0.4467272162437439
  277. Batch: 68
  278. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  279. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  280. Batch Loss: 0.6470417976379395
  281. Batch: 69
  282. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  283. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  284. Batch Loss: 0.519213080406189
  285. Batch: 70
  286. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  287. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  288. Batch Loss: 0.10180605202913284
  289. Batch: 71
  290. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  291. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  292. Batch Loss: 0.3552370071411133
  293. Batch: 72
  294. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  295. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  296. Batch Loss: 0.13312585651874542
  297. Batch: 73
  298. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  299. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  300. Batch Loss: 0.24230259656906128
  301. Batch: 74
  302. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  303. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  304. Batch Loss: 0.7845883965492249
  305. Batch: 75
  306. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  307. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  308. Batch Loss: 0.694536566734314
  309. Batch: 76
  310. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  311. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  312. Batch Loss: 0.11889225244522095
  313. Batch: 77
  314. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  315. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  316. Batch Loss: 0.407955527305603
  317. Batch: 78
  318. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  319. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  320. Batch Loss: 0.2884470224380493
  321. Batch: 79
  322. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  323. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  324. Batch Loss: 0.07099834829568863
  325. Batch: 80
  326. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  327. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  328. Batch Loss: 0.23900917172431946
  329. Batch: 81
  330. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  331. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  332. Batch Loss: 0.6765679717063904
  333. Batch: 82
  334. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  335. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  336. Batch Loss: 0.685997486114502
  337. Batch: 83
  338. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  339. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  340. Batch Loss: 0.25578513741493225
  341. Batch: 84
  342. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  343. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  344. Batch Loss: 0.5069621801376343
  345. Batch: 85
  346. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  347. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  348. Batch Loss: 0.939524233341217
  349. Batch: 86
  350. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  351. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  352. Batch Loss: 0.6981882452964783
  353. Batch: 87
  354. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  355. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  356. Batch Loss: 0.45135483145713806
  357. Batch: 88
  358. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  359. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  360. Batch Loss: 0.4903637766838074
  361. Batch: 89
  362. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  363. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  364. Batch Loss: 0.1362071931362152
  365. Batch: 90
  366. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  367. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  368. Batch Loss: 0.1722727119922638
  369. Batch: 91
  370. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  371. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  372. Batch Loss: 0.6506141424179077
  373. Batch: 92
  374. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  375. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  376. Batch Loss: 0.4171068072319031
  377. Batch: 93
  378. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  379. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  380. Batch Loss: 0.3117816150188446
  381. Batch: 94
  382. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  383. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  384. Batch Loss: 0.6943203210830688
  385. Batch: 95
  386. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  387. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  388. Batch Loss: 0.4945167303085327
  389. Batch: 96
  390. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  391. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  392. Batch Loss: 1.1479922533035278
  393. Batch: 97
  394. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  395. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  396. Batch Loss: 0.0
  397. Batch: 98
  398. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  399. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  400. Batch Loss: 0.5394001603126526
  401. Batch: 99
  402. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  403. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  404. Batch Loss: 0.5768826007843018
  405. Batch: 100
  406. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  407. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  408. Batch Loss: 0.9562923908233643
  409. Batch: 101
  410. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  411. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  412. Batch Loss: 0.5533633232116699
  413. Batch: 102
  414. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  415. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  416. Batch Loss: 0.5430610179901123
  417. Batch: 103
  418. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  419. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  420. Batch Loss: 1.197507381439209
  421. Batch: 104
  422. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  423. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  424. Batch Loss: 0.16239020228385925
  425. Batch: 105
  426. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  427. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  428. Batch Loss: 0.5952204465866089
  429. Batch: 106
  430. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  431. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  432. Batch Loss: 0.6208470463752747
  433. Batch: 107
  434. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  435. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  436. Batch Loss: 0.32691463828086853
  437. Batch: 108
  438. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  439. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  440. Batch Loss: 0.4465545117855072
  441. Batch: 109
  442. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  443. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  444. Batch Loss: 0.2202731966972351
  445. Batch: 110
  446. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  447. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  448. Batch Loss: 0.41666868329048157
  449. Batch: 111
  450. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  451. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  452. Batch Loss: 1.6773345470428467
  453. Batch: 112
  454. Error
  455. Batch: 113
  456. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  457. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  458. Batch Loss: 0.9205189347267151
  459. Batch: 114
  460. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  461. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  462. Batch Loss: 1.1726571321487427
  463. Batch: 115
  464. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  465. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  466. Batch Loss: 0.6203481554985046
  467. Batch: 116
  468. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  469. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  470. Batch Loss: 0.6790733337402344
  471. Batch: 117
  472. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  473. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  474. Batch Loss: 0.2563943564891815
  475. Batch: 118
  476. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  477. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  478. Batch Loss: 1.171336054801941
  479. Batch: 119
  480. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  481. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  482. Batch Loss: 0.5107123255729675
  483. Batch: 120
  484. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  485. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  486. Batch Loss: 0.3867741823196411
  487. Batch: 121
  488. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  489. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  490. Batch Loss: 1.2680294513702393
  491. Batch: 122
  492. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  493. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  494. Batch Loss: 0.15049752593040466
  495. Batch: 123
  496. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  497. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  498. Batch Loss: 0.5865037441253662
  499. Batch: 124
  500. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  501. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  502. Batch Loss: 0.7007516622543335
  503. Epoch 2/10
  504. Batch: 0
  505. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  506. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  507. Batch Loss: 0.8216699957847595
  508. Batch: 1
  509. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  510. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  511. Batch Loss: 1.4645968675613403
  512. Batch: 2
  513. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  514. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  515. Batch Loss: 1.1060538291931152
  516. Batch: 3
  517. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  518. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  519. Batch Loss: 0.32798492908477783
  520. Batch: 4
  521. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  522. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  523. Batch Loss: 0.17417189478874207
  524. Batch: 5
  525. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  526. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  527. Batch Loss: 0.36387449502944946
  528. Batch: 6
  529. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  530. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  531. Batch Loss: 2.4034414291381836
  532. Batch: 7
  533. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  534. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  535. Batch Loss: 0.17307165265083313
  536. Batch: 8
  537. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  538. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  539. Batch Loss: 0.5389558672904968
  540. Batch: 9
  541. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  542. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  543. Batch Loss: 0.7624702453613281
  544. Batch: 10
  545. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  546. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  547. Batch Loss: 0.9147507548332214
  548. Batch: 11
  549. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  550. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  551. Batch Loss: 0.13312022387981415
  552. Batch: 12
  553. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  554. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  555. Batch Loss: 0.7083905935287476
  556. Batch: 13
  557. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  558. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  559. Batch Loss: 0.3251414895057678
  560. Batch: 14
  561. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  562. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  563. Batch Loss: 0.30569905042648315
  564. Batch: 15
  565. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  566. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  567. Batch Loss: 0.3244859576225281
  568. Batch: 16
  569. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  570. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  571. Batch Loss: 0.49008744955062866
  572. Batch: 17
  573. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  574. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  575. Batch Loss: 0.07867049425840378
  576. Batch: 18
  577. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  578. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  579. Batch Loss: 0.28597351908683777
  580. Batch: 19
  581. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  582. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  583. Batch Loss: 1.069812297821045
  584. Batch: 20
  585. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  586. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  587. Batch Loss: 0.8570716977119446
  588. Batch: 21
  589. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  590. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  591. Batch Loss: 0.16483362019062042
  592. Batch: 22
  593. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  594. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  595. Batch Loss: 0.3008725643157959
  596. Batch: 23
  597. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  598. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  599. Batch Loss: 0.7473375797271729
  600. Batch: 24
  601. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  602. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  603. Batch Loss: 0.5934094190597534
  604. Batch: 25
  605. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  606. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  607. Batch Loss: 0.750707745552063
  608. Batch: 26
  609. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  610. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  611. Batch Loss: 1.3021131753921509
  612. Batch: 27
  613. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  614. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  615. Batch Loss: 0.6097243428230286
  616. Batch: 28
  617. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  618. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  619. Batch Loss: 0.5246003866195679
  620. Batch: 29
  621. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  622. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  623. Batch Loss: 1.2733412981033325
  624. Batch: 30
  625. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  626. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  627. Batch Loss: 0.30748918652534485
  628. Batch: 31
  629. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  630. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  631. Batch Loss: 1.1841813325881958
  632. Batch: 32
  633. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  634. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  635. Batch Loss: 0.923446774482727
  636. Batch: 33
  637. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  638. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  639. Batch Loss: 1.2773888111114502
  640. Batch: 34
  641. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  642. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  643. Batch Loss: 0.4615168571472168
  644. Batch: 35
  645. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  646. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  647. Batch Loss: 0.6779862642288208
  648. Batch: 36
  649. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  650. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  651. Batch Loss: 2.0792465209960938
  652. Batch: 37
  653. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  654. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  655. Batch Loss: 0.6698505878448486
  656. Batch: 38
  657. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  658. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  659. Batch Loss: 0.15731731057167053
  660. Batch: 39
  661. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  662. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  663. Batch Loss: 0.6129428148269653
  664. Batch: 40
  665. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  666. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  667. Batch Loss: 0.5848506093025208
  668. Batch: 41
  669. Error
  670. Batch: 42
  671. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  672. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  673. Batch Loss: 0.473865270614624
  674. Batch: 43
  675. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  676. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  677. Batch Loss: 0.8414234519004822
  678. Batch: 44
  679. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  680. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  681. Batch Loss: 0.43582767248153687
  682. Batch: 45
  683. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  684. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  685. Batch Loss: 0.5430217385292053
  686. Batch: 46
  687. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  688. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  689. Batch Loss: 1.0227267742156982
  690. Batch: 47
  691. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  692. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  693. Batch Loss: 0.15761633217334747
  694. Batch: 48
  695. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  696. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  697. Batch Loss: 0.14631341397762299
  698. Batch: 49
  699. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  700. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  701. Batch Loss: 0.27648305892944336
  702. Batch: 50
  703. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  704. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  705. Batch Loss: 0.9377621412277222
  706. Batch: 51
  707. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  708. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  709. Batch Loss: 0.0
  710. Batch: 52
  711. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  712. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  713. Batch Loss: 0.2307640016078949
  714. Batch: 53
  715. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  716. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  717. Batch Loss: 0.3984891176223755
  718. Batch: 54
  719. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  720. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  721. Batch Loss: 1.2325260639190674
  722. Batch: 55
  723. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  724. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  725. Batch Loss: 1.0580955743789673
  726. Batch: 56
  727. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  728. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  729. Batch Loss: 0.6535903215408325
  730. Batch: 57
  731. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  732. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  733. Batch Loss: 0.4038296937942505
  734. Batch: 58
  735. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  736. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  737. Batch Loss: 0.6552420854568481
  738. Batch: 59
  739. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  740. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  741. Batch Loss: 0.19230084121227264
  742. Batch: 60
  743. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  744. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  745. Batch Loss: 0.2307557314634323
  746. Batch: 61
  747. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  748. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  749. Batch Loss: 0.8158867359161377
  750. Batch: 62
  751. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  752. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  753. Batch Loss: 0.34610724449157715
  754. Batch: 63
  755. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  756. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  757. Batch Loss: 0.3918859362602234
  758. Batch: 64
  759. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  760. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  761. Batch Loss: 0.22250822186470032
  762. Batch: 65
  763. Error
  764. Batch: 66
  765. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  766. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  767. Batch Loss: 0.2636241614818573
  768. Batch: 67
  769. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  770. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  771. Batch Loss: 1.3805955648422241
  772. Batch: 68
  773. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  774. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  775. Batch Loss: 0.6620373129844666
  776. Batch: 69
  777. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  778. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  779. Batch Loss: 0.5900037884712219
  780. Batch: 70
  781. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  782. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  783. Batch Loss: 0.13312630355358124
  784. Batch: 71
  785. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  786. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  787. Batch Loss: 1.0269193649291992
  788. Batch: 72
  789. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  790. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  791. Batch Loss: 0.483146607875824
  792. Batch: 73
  793. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  794. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  795. Batch Loss: 0.5252665877342224
  796. Batch: 74
  797. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  798. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  799. Batch Loss: 0.5657846927642822
  800. Batch: 75
  801. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  802. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  803. Batch Loss: 0.09614921361207962
  804. Batch: 76
  805. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  806. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  807. Batch Loss: 0.5516667366027832
  808. Batch: 77
  809. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  810. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  811. Batch Loss: 0.25641006231307983
  812. Batch: 78
  813. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  814. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  815. Batch Loss: 0.5031712651252747
  816. Batch: 79
  817. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  818. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  819. Batch Loss: 0.47777244448661804
  820. Batch: 80
  821. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  822. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  823. Batch Loss: 0.47354888916015625
  824. Batch: 81
  825. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  826. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  827. Batch Loss: 0.6250122785568237
  828. Batch: 82
  829. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  830. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  831. Batch Loss: 1.0788853168487549
  832. Batch: 83
  833. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  834. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  835. Batch Loss: 1.0639724731445312
  836. Batch: 84
  837. Error
  838. Batch: 85
  839. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  840. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  841. Batch Loss: 0.5027806758880615
  842. Batch: 86
  843. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  844. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  845. Batch Loss: 0.33540284633636475
  846. Batch: 87
  847. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  848. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  849. Batch Loss: 1.017976999282837
  850. Batch: 88
  851. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  852. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  853. Batch Loss: 2.2471442222595215
  854. Batch: 89
  855. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  856. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  857. Batch Loss: 2.393146276473999
  858. Batch: 90
  859. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  860. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  861. Batch Loss: 0.5210620164871216
  862. Batch: 91
  863. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  864. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  865. Batch Loss: 0.5725550651550293
  866. Batch: 92
  867. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  868. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  869. Batch Loss: 0.6207171678543091
  870. Batch: 93
  871. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  872. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  873. Batch Loss: 0.7211016416549683
  874. Batch: 94
  875. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  876. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  877. Batch Loss: 0.4072118401527405
  878. Batch: 95
  879. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  880. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  881. Batch Loss: 0.34613466262817383
  882. Batch: 96
  883. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  884. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  885. Batch Loss: 0.7139992117881775
  886. Batch: 97
  887. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  888. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  889. Batch Loss: 0.6466346979141235
  890. Batch: 98
  891. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  892. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  893. Batch Loss: 1.18426513671875
  894. Batch: 99
  895. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  896. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  897. Batch Loss: 0.10487249493598938
  898. Batch: 100
  899. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  900. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  901. Batch Loss: 0.387503981590271
  902. Batch: 101
  903. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  904. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  905. Batch Loss: 0.3416404724121094
  906. Batch: 102
  907. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  908. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  909. Batch Loss: 1.216884732246399
  910. Batch: 103
  911. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  912. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  913. Batch Loss: 0.4944817125797272
  914. Batch: 104
  915. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  916. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  917. Batch Loss: 0.620098352432251
  918. Batch: 105
  919. Error
  920. Batch: 106
  921. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  922. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  923. Batch Loss: 0.23255205154418945
  924. Batch: 107
  925. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  926. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  927. Batch Loss: 1.1633925437927246
  928. Batch: 108
  929. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  930. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  931. Batch Loss: 0.2417421042919159
  932. Batch: 109
  933. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  934. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  935. Batch Loss: 1.3412394523620605
  936. Batch: 110
  937. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  938. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  939. Batch Loss: 1.1594233512878418
  940. Batch: 111
  941. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  942. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  943. Batch Loss: 0.5933969616889954
  944. Batch: 112
  945. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  946. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  947. Batch Loss: 0.849651575088501
  948. Batch: 113
  949. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  950. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  951. Batch Loss: 0.46872371435165405
  952. Batch: 114
  953. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  954. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  955. Batch Loss: 0.44267702102661133
  956. Batch: 115
  957. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  958. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  959. Batch Loss: 0.7704805135726929
  960. Batch: 116
  961. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  962. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  963. Batch Loss: 0.709647536277771
  964. Batch: 117
  965. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  966. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  967. Batch Loss: 0.0
  968. Batch: 118
  969. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  970. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  971. Batch Loss: 0.5183135867118835
  972. Batch: 119
  973. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  974. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  975. Batch Loss: 0.648858904838562
  976. Batch: 120
  977. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  978. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  979. Batch Loss: 0.601204514503479
  980. Batch: 121
  981. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  982. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  983. Batch Loss: 0.05967683345079422
  984. Batch: 122
  985. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  986. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  987. Batch Loss: 1.6440906524658203
  988. Batch: 123
  989. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  990. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  991. Batch Loss: 1.2573587894439697
  992. Batch: 124
  993. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  994. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  995. Batch Loss: 0.9582837224006653
  996. Epoch 3/10
  997. Batch: 0
  998. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  999. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1000. Batch Loss: 0.7278819680213928
  1001. Batch: 1
  1002. Error
  1003. Batch: 2
  1004. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1005. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1006. Batch Loss: 0.6459208726882935
  1007. Batch: 3
  1008. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1009. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1010. Batch Loss: 0.45147448778152466
  1011. Batch: 4
  1012. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1013. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1014. Batch Loss: 0.13825926184654236
  1015. Batch: 5
  1016. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1017. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1018. Batch Loss: 0.0
  1019. Batch: 6
  1020. Error
  1021. Batch: 7
  1022. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1023. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1024. Batch Loss: 0.7120490074157715
  1025. Batch: 8
  1026. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1027. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1028. Batch Loss: 0.34613004326820374
  1029. Batch: 9
  1030. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1031. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1032. Batch Loss: 0.43266192078590393
  1033. Batch: 10
  1034. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1035. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1036. Batch Loss: 0.8927388191223145
  1037. Batch: 11
  1038. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1039. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1040. Batch Loss: 0.3585691452026367
  1041. Batch: 12
  1042. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1043. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1044. Batch Loss: 0.687412679195404
  1045. Batch: 13
  1046. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1047. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1048. Batch Loss: 0.4207839071750641
  1049. Batch: 14
  1050. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1051. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1052. Batch Loss: 0.5485715866088867
  1053. Batch: 15
  1054. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1055. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1056. Batch Loss: 0.6028484106063843
  1057. Batch: 16
  1058. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1059. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1060. Batch Loss: 0.6542356014251709
  1061. Batch: 17
  1062. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1063. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1064. Batch Loss: 1.3747721910476685
  1065. Batch: 18
  1066. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1067. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1068. Batch Loss: 0.8434720039367676
  1069. Batch: 19
  1070. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1071. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1072. Batch Loss: 0.6236392259597778
  1073. Batch: 20
  1074. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1075. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1076. Batch Loss: 0.34962406754493713
  1077. Batch: 21
  1078. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1079. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1080. Batch Loss: 0.8068771958351135
  1081. Batch: 22
  1082. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1083. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1084. Batch Loss: 0.19277679920196533
  1085. Batch: 23
  1086. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1087. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1088. Batch Loss: 0.7446494102478027
  1089. Batch: 24
  1090. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1091. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1092. Batch Loss: 0.42694246768951416
  1093. Batch: 25
  1094. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1095. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1096. Batch Loss: 0.4576033353805542
  1097. Batch: 26
  1098. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1099. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1100. Batch Loss: 0.7533493041992188
  1101. Batch: 27
  1102. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1103. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1104. Batch Loss: 0.9402579665184021
  1105. Batch: 28
  1106. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1107. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1108. Batch Loss: 0.4793030321598053
  1109. Batch: 29
  1110. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1111. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1112. Batch Loss: 1.0610723495483398
  1113. Batch: 30
  1114. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1115. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1116. Batch Loss: 0.7499773502349854
  1117. Batch: 31
  1118. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1119. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1120. Batch Loss: 0.32965439558029175
  1121. Batch: 32
  1122. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1123. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1124. Batch Loss: 0.5645320415496826
  1125. Batch: 33
  1126. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1127. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1128. Batch Loss: 0.0
  1129. Batch: 34
  1130. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1131. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1132. Batch Loss: 0.06181241199374199
  1133. Batch: 35
  1134. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1135. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1136. Batch Loss: 1.0543919801712036
  1137. Batch: 36
  1138. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1139. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1140. Batch Loss: 1.5146477222442627
  1141. Batch: 37
  1142. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1143. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1144. Batch Loss: 0.4619579613208771
  1145. Batch: 38
  1146. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1147. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1148. Batch Loss: 0.3296763598918915
  1149. Batch: 39
  1150. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1151. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1152. Batch Loss: 1.2209529876708984
  1153. Batch: 40
  1154. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1155. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1156. Batch Loss: 0.37808194756507874
  1157. Batch: 41
  1158. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1159. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1160. Batch Loss: 0.9647338390350342
  1161. Batch: 42
  1162. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1163. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1164. Batch Loss: 1.1537007093429565
  1165. Batch: 43
  1166. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1167. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1168. Batch Loss: 0.5006552934646606
  1169. Batch: 44
  1170. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1171. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1172. Batch Loss: 0.25640833377838135
  1173. Batch: 45
  1174. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1175. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1176. Batch Loss: 0.7129522562026978
  1177. Batch: 46
  1178. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1179. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1180. Batch Loss: 0.24050123989582062
  1181. Batch: 47
  1182. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1183. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1184. Batch Loss: 0.16884639859199524
  1185. Batch: 48
  1186. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1187. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1188. Batch Loss: 0.38806629180908203
  1189. Batch: 49
  1190. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1191. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1192. Batch Loss: 0.9439498782157898
  1193. Batch: 50
  1194. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1195. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1196. Batch Loss: 0.17903417348861694
  1197. Batch: 51
  1198. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1199. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1200. Batch Loss: 0.0
  1201. Batch: 52
  1202. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1203. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1204. Batch Loss: 0.2788226902484894
  1205. Batch: 53
  1206. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1207. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1208. Batch Loss: 0.5128114819526672
  1209. Batch: 54
  1210. Error
  1211. Batch: 55
  1212. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1213. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1214. Batch Loss: 0.3532533049583435
  1215. Batch: 56
  1216. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1217. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1218. Batch Loss: 0.6211085915565491
  1219. Batch: 57
  1220. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1221. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1222. Batch Loss: 1.264704704284668
  1223. Batch: 58
  1224. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1225. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1226. Batch Loss: 0.40838971734046936
  1227. Batch: 59
  1228. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1229. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1230. Batch Loss: 0.8898868560791016
  1231. Batch: 60
  1232. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1233. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1234. Batch Loss: 0.8116297721862793
  1235. Batch: 61
  1236. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1237. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1238. Batch Loss: 0.8390936851501465
  1239. Batch: 62
  1240. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1241. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1242. Batch Loss: 0.6558694839477539
  1243. Batch: 63
  1244. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1245. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1246. Batch Loss: 0.30598610639572144
  1247. Batch: 64
  1248. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1249. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1250. Batch Loss: 0.46151456236839294
  1251. Batch: 65
  1252. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1253. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1254. Batch Loss: 0.965258777141571
  1255. Batch: 66
  1256. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1257. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1258. Batch Loss: 0.2563852071762085
  1259. Batch: 67
  1260. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1261. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1262. Batch Loss: 2.0038955211639404
  1263. Batch: 68
  1264. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1265. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1266. Batch Loss: 0.24034979939460754
  1267. Batch: 69
  1268. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1269. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1270. Batch Loss: 0.19229565560817719
  1271. Batch: 70
  1272. Error
  1273. Batch: 71
  1274. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1275. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1276. Batch Loss: 0.3018265664577484
  1277. Batch: 72
  1278. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1279. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1280. Batch Loss: 0.5768895745277405
  1281. Batch: 73
  1282. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1283. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1284. Batch Loss: 0.4737894833087921
  1285. Batch: 74
  1286. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1287. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1288. Batch Loss: 0.36054667830467224
  1289. Batch: 75
  1290. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1291. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1292. Batch Loss: 0.42040392756462097
  1293. Batch: 76
  1294. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1295. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1296. Batch Loss: 1.8124957084655762
  1297. Batch: 77
  1298. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1299. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1300. Batch Loss: 0.6386255025863647
  1301. Batch: 78
  1302. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1303. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1304. Batch Loss: 0.8088455200195312
  1305. Batch: 79
  1306. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1307. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1308. Batch Loss: 0.5948607921600342
  1309. Batch: 80
  1310. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1311. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1312. Batch Loss: 0.7026998996734619
  1313. Batch: 81
  1314. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1315. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1316. Batch Loss: 0.9699044823646545
  1317. Batch: 82
  1318. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1319. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1320. Batch Loss: 0.7624577283859253
  1321. Batch: 83
  1322. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1323. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1324. Batch Loss: 0.5465285778045654
  1325. Batch: 84
  1326. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1327. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1328. Batch Loss: 0.19229809939861298
  1329. Batch: 85
  1330. Error
  1331. Batch: 86
  1332. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1333. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1334. Batch Loss: 0.5466693043708801
  1335. Batch: 87
  1336. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1337. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1338. Batch Loss: 0.1507691740989685
  1339. Batch: 88
  1340. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1341. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1342. Batch Loss: 0.51142817735672
  1343. Batch: 89
  1344. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1345. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1346. Batch Loss: 0.8223261833190918
  1347. Batch: 90
  1348. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1349. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1350. Batch Loss: 0.29838359355926514
  1351. Batch: 91
  1352. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1353. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1354. Batch Loss: 0.7615168690681458
  1355. Batch: 92
  1356. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1357. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1358. Batch Loss: 1.186139464378357
  1359. Batch: 93
  1360. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1361. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1362. Batch Loss: 0.5342870950698853
  1363. Batch: 94
  1364. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1365. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1366. Batch Loss: 1.307042121887207
  1367. Batch: 95
  1368. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1369. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1370. Batch Loss: 0.41824039816856384
  1371. Batch: 96
  1372. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1373. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1374. Batch Loss: 0.15949343144893646
  1375. Batch: 97
  1376. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1377. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1378. Batch Loss: 0.30207112431526184
  1379. Batch: 98
  1380. Error
  1381. Batch: 99
  1382. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1383. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1384. Batch Loss: 1.588372826576233
  1385. Batch: 100
  1386. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1387. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1388. Batch Loss: 0.3695206940174103
  1389. Batch: 101
  1390. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1391. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1392. Batch Loss: 0.3845994174480438
  1393. Batch: 102
  1394. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1395. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1396. Batch Loss: 0.2629271149635315
  1397. Batch: 103
  1398. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1399. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1400. Batch Loss: 0.26892513036727905
  1401. Batch: 104
  1402. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1403. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1404. Batch Loss: 0.6459289789199829
  1405. Batch: 105
  1406. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1407. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1408. Batch Loss: 0.7446944713592529
  1409. Batch: 106
  1410. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1411. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1412. Batch Loss: 0.5802391171455383
  1413. Batch: 107
  1414. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1415. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1416. Batch Loss: 1.1414464712142944
  1417. Batch: 108
  1418. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1419. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1420. Batch Loss: 0.4660806655883789
  1421. Batch: 109
  1422. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1423. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1424. Batch Loss: 0.2902428209781647
  1425. Batch: 110
  1426. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1427. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1428. Batch Loss: 0.35248395800590515
  1429. Batch: 111
  1430. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1431. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1432. Batch Loss: 0.23601096868515015
  1433. Batch: 112
  1434. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1435. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1436. Batch Loss: 0.5716551542282104
  1437. Batch: 113
  1438. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1439. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1440. Batch Loss: 0.7524344325065613
  1441. Batch: 114
  1442. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1443. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1444. Batch Loss: 1.3556723594665527
  1445. Batch: 115
  1446. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1447. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1448. Batch Loss: 0.8533833026885986
  1449. Batch: 116
  1450. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1451. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1452. Batch Loss: 0.34612202644348145
  1453. Batch: 117
  1454. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1455. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1456. Batch Loss: 0.4713132977485657
  1457. Batch: 118
  1458. Error
  1459. Batch: 119
  1460. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1461. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1462. Batch Loss: 0.8784006834030151
  1463. Batch: 120
  1464. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1465. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1466. Batch Loss: 0.9391247034072876
  1467. Batch: 121
  1468. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1469. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1470. Batch Loss: 0.4900531768798828
  1471. Batch: 122
  1472. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1473. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1474. Batch Loss: 0.7640222907066345
  1475. Batch: 123
  1476. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1477. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1478. Batch Loss: 2.6718268394470215
  1479. Batch: 124
  1480. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1481. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1482. Batch Loss: 0.5199609994888306
  1483. Epoch 4/10
  1484. Batch: 0
  1485. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1486. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1487. Batch Loss: 0.6922632455825806
  1488. Batch: 1
  1489. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1490. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1491. Batch Loss: 0.14888140559196472
  1492. Batch: 2
  1493. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1494. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1495. Batch Loss: 0.44711950421333313
  1496. Batch: 3
  1497. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1498. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1499. Batch Loss: 0.5480469465255737
  1500. Batch: 4
  1501. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1502. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1503. Batch Loss: 0.17102950811386108
  1504. Batch: 5
  1505. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1506. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1507. Batch Loss: 0.5360546112060547
  1508. Batch: 6
  1509. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1510. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1511. Batch Loss: 0.6970803737640381
  1512. Batch: 7
  1513. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1514. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1515. Batch Loss: 0.23016518354415894
  1516. Batch: 8
  1517. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1518. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1519. Batch Loss: 0.1648205816745758
  1520. Batch: 9
  1521. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1522. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1523. Batch Loss: 0.09109208732843399
  1524. Batch: 10
  1525. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1526. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1527. Batch Loss: 0.36057132482528687
  1528. Batch: 11
  1529. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1530. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1531. Batch Loss: 0.6477615833282471
  1532. Batch: 12
  1533. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1534. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1535. Batch Loss: 0.4698120355606079
  1536. Batch: 13
  1537. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1538. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1539. Batch Loss: 0.4305943250656128
  1540. Batch: 14
  1541. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1542. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1543. Batch Loss: 0.6651465892791748
  1544. Batch: 15
  1545. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1546. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1547. Batch Loss: 0.1573398858308792
  1548. Batch: 16
  1549. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1550. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1551. Batch Loss: 0.40012386441230774
  1552. Batch: 17
  1553. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1554. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1555. Batch Loss: 1.0559180974960327
  1556. Batch: 18
  1557. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1558. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1559. Batch Loss: 0.05089643597602844
  1560. Batch: 19
  1561. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1562. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1563. Batch Loss: 0.0
  1564. Batch: 20
  1565. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1566. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1567. Batch Loss: 1.1537196636199951
  1568. Batch: 21
  1569. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1570. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1571. Batch Loss: 0.5404183864593506
  1572. Batch: 22
  1573. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1574. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1575. Batch Loss: 0.3461456894874573
  1576. Batch: 23
  1577. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1578. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1579. Batch Loss: 0.6188719272613525
  1580. Batch: 24
  1581. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1582. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1583. Batch Loss: 0.7629416584968567
  1584. Batch: 25
  1585. Error
  1586. Batch: 26
  1587. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1588. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1589. Batch Loss: 1.150776982307434
  1590. Batch: 27
  1591. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1592. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1593. Batch Loss: 0.5499976873397827
  1594. Batch: 28
  1595. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1596. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1597. Batch Loss: 0.47388264536857605
  1598. Batch: 29
  1599. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1600. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1601. Batch Loss: 0.35208505392074585
  1602. Batch: 30
  1603. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1604. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1605. Batch Loss: 0.9259459376335144
  1606. Batch: 31
  1607. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1608. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1609. Batch Loss: 0.19180238246917725
  1610. Batch: 32
  1611. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1612. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1613. Batch Loss: 0.1734892725944519
  1614. Batch: 33
  1615. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1616. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1617. Batch Loss: 0.7136067152023315
  1618. Batch: 34
  1619. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1620. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1621. Batch Loss: 0.43385300040245056
  1622. Batch: 35
  1623. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1624. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1625. Batch Loss: 0.3955739140510559
  1626. Batch: 36
  1627. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1628. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1629. Batch Loss: 0.5768712162971497
  1630. Batch: 37
  1631. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1632. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1633. Batch Loss: 0.33995622396469116
  1634. Batch: 38
  1635. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1636. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1637. Batch Loss: 0.7760007977485657
  1638. Batch: 39
  1639. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1640. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1641. Batch Loss: 1.1935755014419556
  1642. Batch: 40
  1643. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1644. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1645. Batch Loss: 0.4420817494392395
  1646. Batch: 41
  1647. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1648. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1649. Batch Loss: 0.8059060573577881
  1650. Batch: 42
  1651. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1652. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1653. Batch Loss: 0.2579205632209778
  1654. Batch: 43
  1655. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1656. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1657. Batch Loss: 0.20431718230247498
  1658. Batch: 44
  1659. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1660. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1661. Batch Loss: 0.6817824244499207
  1662. Batch: 45
  1663. Error
  1664. Batch: 46
  1665. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1666. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1667. Batch Loss: 0.8735362887382507
  1668. Batch: 47
  1669. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1670. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1671. Batch Loss: 0.0
  1672. Batch: 48
  1673. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1674. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1675. Batch Loss: 0.7930512428283691
  1676. Batch: 49
  1677. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1678. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1679. Batch Loss: 0.1573403775691986
  1680. Batch: 50
  1681. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1682. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1683. Batch Loss: 0.7840093374252319
  1684. Batch: 51
  1685. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1686. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1687. Batch Loss: 0.649664044380188
  1688. Batch: 52
  1689. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1690. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1691. Batch Loss: 0.9739811420440674
  1692. Batch: 53
  1693. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1694. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1695. Batch Loss: 0.37220293283462524
  1696. Batch: 54
  1697. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1698. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1699. Batch Loss: 0.5446142554283142
  1700. Batch: 55
  1701. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1702. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1703. Batch Loss: 0.6623204350471497
  1704. Batch: 56
  1705. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1706. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1707. Batch Loss: 1.2897769212722778
  1708. Batch: 57
  1709. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1710. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1711. Batch Loss: 0.4163522720336914
  1712. Batch: 58
  1713. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1714. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1715. Batch Loss: 0.25079649686813354
  1716. Batch: 59
  1717. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1718. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1719. Batch Loss: 0.16482272744178772
  1720. Batch: 60
  1721. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1722. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1723. Batch Loss: 0.10180752724409103
  1724. Batch: 61
  1725. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1726. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1727. Batch Loss: 0.4564470946788788
  1728. Batch: 62
  1729. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1730. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1731. Batch Loss: 0.49771708250045776
  1732. Batch: 63
  1733. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1734. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1735. Batch Loss: 0.2827431559562683
  1736. Batch: 64
  1737. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1738. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1739. Batch Loss: 0.37174129486083984
  1740. Batch: 65
  1741. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1742. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1743. Batch Loss: 0.18282704055309296
  1744. Batch: 66
  1745. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1746. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1747. Batch Loss: 1.0232051610946655
  1748. Batch: 67
  1749. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1750. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1751. Batch Loss: 0.7622325420379639
  1752. Batch: 68
  1753. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1754. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1755. Batch Loss: 0.7686375379562378
  1756. Batch: 69
  1757. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1758. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1759. Batch Loss: 0.31592631340026855
  1760. Batch: 70
  1761. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1762. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1763. Batch Loss: 1.3882167339324951
  1764. Batch: 71
  1765. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1766. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1767. Batch Loss: 0.6273937821388245
  1768. Batch: 72
  1769. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1770. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1771. Batch Loss: 0.4716740846633911
  1772. Batch: 73
  1773. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1774. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1775. Batch Loss: 0.47387218475341797
  1776. Batch: 74
  1777. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1778. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1779. Batch Loss: 0.46150901913642883
  1780. Batch: 75
  1781. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1782. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1783. Batch Loss: 0.15063020586967468
  1784. Batch: 76
  1785. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1786. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1787. Batch Loss: 0.3580213487148285
  1788. Batch: 77
  1789. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1790. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1791. Batch Loss: 0.8583611249923706
  1792. Batch: 78
  1793. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1794. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1795. Batch Loss: 0.4247787594795227
  1796. Batch: 79
  1797. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1798. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1799. Batch Loss: 0.5047405958175659
  1800. Batch: 80
  1801. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1802. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1803. Batch Loss: 0.5369718670845032
  1804. Batch: 81
  1805. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1806. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1807. Batch Loss: 1.2979367971420288
  1808. Batch: 82
  1809. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1810. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1811. Batch Loss: 0.5384169220924377
  1812. Batch: 83
  1813. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1814. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1815. Batch Loss: 0.7833620309829712
  1816. Batch: 84
  1817. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1818. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1819. Batch Loss: 0.3182750642299652
  1820. Batch: 85
  1821. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1822. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1823. Batch Loss: 0.49447235465049744
  1824. Batch: 86
  1825. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1826. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1827. Batch Loss: 0.7848111391067505
  1828. Batch: 87
  1829. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1830. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1831. Batch Loss: 0.3556877076625824
  1832. Batch: 88
  1833. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1834. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1835. Batch Loss: 0.0910857617855072
  1836. Batch: 89
  1837. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1838. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1839. Batch Loss: 0.222510427236557
  1840. Batch: 90
  1841. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1842. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1843. Batch Loss: 0.2163364589214325
  1844. Batch: 91
  1845. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1846. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1847. Batch Loss: 0.4128417372703552
  1848. Batch: 92
  1849. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1850. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1851. Batch Loss: 0.5624570846557617
  1852. Batch: 93
  1853. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1854. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1855. Batch Loss: 0.9423930048942566
  1856. Batch: 94
  1857. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1858. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1859. Batch Loss: 0.647646427154541
  1860. Batch: 95
  1861. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1862. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1863. Batch Loss: 0.31592196226119995
  1864. Batch: 96
  1865. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1866. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1867. Batch Loss: 0.7478219270706177
  1868. Batch: 97
  1869. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1870. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1871. Batch Loss: 1.1548545360565186
  1872. Batch: 98
  1873. Error
  1874. Batch: 99
  1875. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1876. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1877. Batch Loss: 0.6837530136108398
  1878. Batch: 100
  1879. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1880. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1881. Batch Loss: 0.466111421585083
  1882. Batch: 101
  1883. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1884. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1885. Batch Loss: 3.3172287940979004
  1886. Batch: 102
  1887. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1888. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1889. Batch Loss: 0.08546465635299683
  1890. Batch: 103
  1891. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1892. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1893. Batch Loss: 0.5403462052345276
  1894. Batch: 104
  1895. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1896. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1897. Batch Loss: 0.5176123380661011
  1898. Batch: 105
  1899. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1900. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1901. Batch Loss: 0.1442287266254425
  1902. Batch: 106
  1903. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1904. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1905. Batch Loss: 1.2998274564743042
  1906. Batch: 107
  1907. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1908. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1909. Batch Loss: 0.7131085395812988
  1910. Batch: 108
  1911. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1912. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1913. Batch Loss: 0.7866928577423096
  1914. Batch: 109
  1915. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1916. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1917. Batch Loss: 0.818934977054596
  1918. Batch: 110
  1919. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1920. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1921. Batch Loss: 0.5546977519989014
  1922. Batch: 111
  1923. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1924. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1925. Batch Loss: 0.8401613235473633
  1926. Batch: 112
  1927. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1928. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1929. Batch Loss: 0.8721956014633179
  1930. Batch: 113
  1931. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1932. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1933. Batch Loss: 0.4246814250946045
  1934. Batch: 114
  1935. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1936. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1937. Batch Loss: 0.9922517538070679
  1938. Batch: 115
  1939. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1940. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1941. Batch Loss: 0.463589608669281
  1942. Batch: 116
  1943. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1944. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1945. Batch Loss: 0.4134780764579773
  1946. Batch: 117
  1947. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1948. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1949. Batch Loss: 0.853995680809021
  1950. Batch: 118
  1951. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1952. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1953. Batch Loss: 0.0
  1954. Batch: 119
  1955. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1956. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1957. Batch Loss: 0.15047423541545868
  1958. Batch: 120
  1959. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1960. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1961. Batch Loss: 0.7129990458488464
  1962. Batch: 121
  1963. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1964. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1965. Batch Loss: 0.1193607896566391
  1966. Batch: 122
  1967. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1968. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1969. Batch Loss: 1.156897783279419
  1970. Batch: 123
  1971. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1972. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1973. Batch Loss: 1.0600188970565796
  1974. Batch: 124
  1975. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1976. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1977. Batch Loss: 0.915186882019043
  1978. Epoch 5/10
  1979. Batch: 0
  1980. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1981. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1982. Batch Loss: 0.8971927165985107
  1983. Batch: 1
  1984. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1985. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1986. Batch Loss: 0.743038535118103
  1987. Batch: 2
  1988. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1989. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1990. Batch Loss: 0.7066560983657837
  1991. Batch: 3
  1992. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1993. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1994. Batch Loss: 0.0
  1995. Batch: 4
  1996. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  1997. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  1998. Batch Loss: 0.615856409072876
  1999. Batch: 5
  2000. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2001. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2002. Batch Loss: 1.3141632080078125
  2003. Batch: 6
  2004. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2005. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2006. Batch Loss: 0.21634584665298462
  2007. Batch: 7
  2008. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2009. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2010. Batch Loss: 0.6439026594161987
  2011. Batch: 8
  2012. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2013. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2014. Batch Loss: 0.18216435611248016
  2015. Batch: 9
  2016. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2017. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2018. Batch Loss: 0.3840988874435425
  2019. Batch: 10
  2020. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2021. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2022. Batch Loss: 1.1274313926696777
  2023. Batch: 11
  2024. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2025. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2026. Batch Loss: 1.0008164644241333
  2027. Batch: 12
  2028. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2029. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2030. Batch Loss: 0.6839984655380249
  2031. Batch: 13
  2032. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2033. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2034. Batch Loss: 2.0131030082702637
  2035. Batch: 14
  2036. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2037. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2038. Batch Loss: 1.263435959815979
  2039. Batch: 15
  2040. Error
  2041. Batch: 16
  2042. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2043. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2044. Batch Loss: 0.5564086437225342
  2045. Batch: 17
  2046. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2047. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2048. Batch Loss: 0.5760500431060791
  2049. Batch: 18
  2050. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2051. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2052. Batch Loss: 0.37080150842666626
  2053. Batch: 19
  2054. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2055. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2056. Batch Loss: 0.25847816467285156
  2057. Batch: 20
  2058. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2059. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2060. Batch Loss: 0.6296982169151306
  2061. Batch: 21
  2062. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2063. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2064. Batch Loss: 0.2490970343351364
  2065. Batch: 22
  2066. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2067. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2068. Batch Loss: 0.774893581867218
  2069. Batch: 23
  2070. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2071. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2072. Batch Loss: 0.6812818050384521
  2073. Batch: 24
  2074. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2075. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2076. Batch Loss: 0.569995105266571
  2077. Batch: 25
  2078. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2079. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2080. Batch Loss: 0.9877709150314331
  2081. Batch: 26
  2082. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2083. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2084. Batch Loss: 0.6179949045181274
  2085. Batch: 27
  2086. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2087. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2088. Batch Loss: 0.38508981466293335
  2089. Batch: 28
  2090. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2091. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2092. Batch Loss: 0.9265202879905701
  2093. Batch: 29
  2094. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2095. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2096. Batch Loss: 0.22771534323692322
  2097. Batch: 30
  2098. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2099. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2100. Batch Loss: 0.9655395150184631
  2101. Batch: 31
  2102. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2103. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2104. Batch Loss: 0.19967934489250183
  2105. Batch: 32
  2106. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2107. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2108. Batch Loss: 0.38859593868255615
  2109. Batch: 33
  2110. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2111. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2112. Batch Loss: 0.5434062480926514
  2113. Batch: 34
  2114. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2115. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2116. Batch Loss: 0.5768726468086243
  2117. Batch: 35
  2118. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2119. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2120. Batch Loss: 1.278775930404663
  2121. Batch: 36
  2122. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2123. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2124. Batch Loss: 0.6844310760498047
  2125. Batch: 37
  2126. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2127. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2128. Batch Loss: 0.3146532475948334
  2129. Batch: 38
  2130. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2131. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2132. Batch Loss: 0.6466431617736816
  2133. Batch: 39
  2134. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2135. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2136. Batch Loss: 0.9477319717407227
  2137. Batch: 40
  2138. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2139. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2140. Batch Loss: 0.5980005264282227
  2141. Batch: 41
  2142. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2143. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2144. Batch Loss: 0.2307475209236145
  2145. Batch: 42
  2146. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2147. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2148. Batch Loss: 0.7336395978927612
  2149. Batch: 43
  2150. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2151. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2152. Batch Loss: 0.31728947162628174
  2153. Batch: 44
  2154. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2155. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2156. Batch Loss: 0.23177650570869446
  2157. Batch: 45
  2158. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2159. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2160. Batch Loss: 0.41650867462158203
  2161. Batch: 46
  2162. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2163. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2164. Batch Loss: 1.307653784751892
  2165. Batch: 47
  2166. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2167. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2168. Batch Loss: 1.7911734580993652
  2169. Batch: 48
  2170. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2171. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2172. Batch Loss: 0.9592520594596863
  2173. Batch: 49
  2174. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2175. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2176. Batch Loss: 0.2214302271604538
  2177. Batch: 50
  2178. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2179. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2180. Batch Loss: 0.4738696217536926
  2181. Batch: 51
  2182. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2183. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2184. Batch Loss: 0.11935894936323166
  2185. Batch: 52
  2186. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2187. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2188. Batch Loss: 0.4913233518600464
  2189. Batch: 53
  2190. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2191. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2192. Batch Loss: 0.8325319886207581
  2193. Batch: 54
  2194. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2195. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2196. Batch Loss: 1.4077162742614746
  2197. Batch: 55
  2198. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2199. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2200. Batch Loss: 0.7323758006095886
  2201. Batch: 56
  2202. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2203. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2204. Batch Loss: 0.45407113432884216
  2205. Batch: 57
  2206. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2207. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2208. Batch Loss: 0.5384114980697632
  2209. Batch: 58
  2210. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2211. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2212. Batch Loss: 1.3027467727661133
  2213. Batch: 59
  2214. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2215. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2216. Batch Loss: 0.32505378127098083
  2217. Batch: 60
  2218. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2219. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2220. Batch Loss: 1.0689892768859863
  2221. Batch: 61
  2222. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2223. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2224. Batch Loss: 1.0756731033325195
  2225. Batch: 62
  2226. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2227. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2228. Batch Loss: 1.004233479499817
  2229. Batch: 63
  2230. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2231. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2232. Batch Loss: 0.39081770181655884
  2233. Batch: 64
  2234. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2235. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2236. Batch Loss: 0.5006827712059021
  2237. Batch: 65
  2238. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2239. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2240. Batch Loss: 0.4282821714878082
  2241. Batch: 66
  2242. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2243. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2244. Batch Loss: 0.7733926177024841
  2245. Batch: 67
  2246. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2247. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2248. Batch Loss: 1.0973968505859375
  2249. Batch: 68
  2250. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2251. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2252. Batch Loss: 1.0897326469421387
  2253. Batch: 69
  2254. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2255. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2256. Batch Loss: 0.3708232641220093
  2257. Batch: 70
  2258. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2259. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2260. Batch Loss: 0.6902000904083252
  2261. Batch: 71
  2262. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2263. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2264. Batch Loss: 0.4837237000465393
  2265. Batch: 72
  2266. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2267. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2268. Batch Loss: 0.21152591705322266
  2269. Batch: 73
  2270. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2271. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2272. Batch Loss: 0.4012894034385681
  2273. Batch: 74
  2274. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2275. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2276. Batch Loss: 1.0042024850845337
  2277. Batch: 75
  2278. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2279. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2280. Batch Loss: 1.104366421699524
  2281. Batch: 76
  2282. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2283. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2284. Batch Loss: 0.9922798871994019
  2285. Batch: 77
  2286. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2287. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2288. Batch Loss: 0.4935346245765686
  2289. Batch: 78
  2290. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2291. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2292. Batch Loss: 0.47199973464012146
  2293. Batch: 79
  2294. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2295. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2296. Batch Loss: 0.5841437578201294
  2297. Batch: 80
  2298. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2299. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2300. Batch Loss: 1.7307100296020508
  2301. Batch: 81
  2302. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2303. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2304. Batch Loss: 1.349251389503479
  2305. Batch: 82
  2306. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2307. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2308. Batch Loss: 0.5995259284973145
  2309. Batch: 83
  2310. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2311. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2312. Batch Loss: 0.28844931721687317
  2313. Batch: 84
  2314. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2315. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2316. Batch Loss: 0.7133349180221558
  2317. Batch: 85
  2318. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2319. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2320. Batch Loss: 0.8668351173400879
  2321. Batch: 86
  2322. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2323. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2324. Batch Loss: 1.1908094882965088
  2325. Batch: 87
  2326. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2327. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2328. Batch Loss: 0.9464229941368103
  2329. Batch: 88
  2330. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2331. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2332. Batch Loss: 0.4326609969139099
  2333. Batch: 89
  2334. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2335. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2336. Batch Loss: 1.306373953819275
  2337. Batch: 90
  2338. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2339. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2340. Batch Loss: 0.6641676425933838
  2341. Batch: 91
  2342. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2343. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2344. Batch Loss: 0.8524676561355591
  2345. Batch: 92
  2346. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2347. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2348. Batch Loss: 0.6206752061843872
  2349. Batch: 93
  2350. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2351. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2352. Batch Loss: 0.31357571482658386
  2353. Batch: 94
  2354. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2355. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2356. Batch Loss: 1.5223159790039062
  2357. Batch: 95
  2358. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2359. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2360. Batch Loss: 0.42441660165786743
  2361. Batch: 96
  2362. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2363. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2364. Batch Loss: 0.5899932980537415
  2365. Batch: 97
  2366. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2367. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2368. Batch Loss: 1.1782273054122925
  2369. Batch: 98
  2370. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2371. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2372. Batch Loss: 0.433566153049469
  2373. Batch: 99
  2374. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2375. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2376. Batch Loss: 0.8485879898071289
  2377. Batch: 100
  2378. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2379. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2380. Batch Loss: 1.1501132249832153
  2381. Batch: 101
  2382. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2383. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2384. Batch Loss: 0.2891663610935211
  2385. Batch: 102
  2386. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2387. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2388. Batch Loss: 0.6841820478439331
  2389. Batch: 103
  2390. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2391. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2392. Batch Loss: 0.6977110505104065
  2393. Batch: 104
  2394. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2395. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2396. Batch Loss: 0.5537427663803101
  2397. Batch: 105
  2398. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2399. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2400. Batch Loss: 1.3460692167282104
  2401. Batch: 106
  2402. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2403. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2404. Batch Loss: 0.9163570404052734
  2405. Batch: 107
  2406. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2407. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2408. Batch Loss: 0.33141249418258667
  2409. Batch: 108
  2410. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2411. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2412. Batch Loss: 0.7692042589187622
  2413. Batch: 109
  2414. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2415. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2416. Batch Loss: 0.09613628685474396
  2417. Batch: 110
  2418. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2419. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2420. Batch Loss: 0.2390090972185135
  2421. Batch: 111
  2422. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2423. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2424. Batch Loss: 0.7899326682090759
  2425. Batch: 112
  2426. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2427. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2428. Batch Loss: 0.37952086329460144
  2429. Batch: 113
  2430. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2431. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2432. Batch Loss: 0.20361103117465973
  2433. Batch: 114
  2434. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2435. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2436. Batch Loss: 1.237602949142456
  2437. Batch: 115
  2438. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2439. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2440. Batch Loss: 0.3845984935760498
  2441. Batch: 116
  2442. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2443. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2444. Batch Loss: 0.12145458161830902
  2445. Batch: 117
  2446. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2447. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2448. Batch Loss: 0.8459117412567139
  2449. Batch: 118
  2450. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2451. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2452. Batch Loss: 1.2547228336334229
  2453. Batch: 119
  2454. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2455. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2456. Batch Loss: 0.5698932409286499
  2457. Batch: 120
  2458. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2459. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2460. Batch Loss: 0.22944140434265137
  2461. Batch: 121
  2462. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2463. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2464. Batch Loss: 0.49232348799705505
  2465. Batch: 122
  2466. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2467. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2468. Batch Loss: 0.7970023155212402
  2469. Batch: 123
  2470. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2471. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2472. Batch Loss: 1.8315078020095825
  2473. Batch: 124
  2474. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2475. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2476. Batch Loss: 0.0
  2477. Epoch 6/10
  2478. Batch: 0
  2479. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2480. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2481. Batch Loss: 0.5872188806533813
  2482. Batch: 1
  2483. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2484. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2485. Batch Loss: 0.4982620179653168
  2486. Batch: 2
  2487. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2488. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2489. Batch Loss: 0.3902386426925659
  2490. Batch: 3
  2491. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2492. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2493. Batch Loss: 0.5142786502838135
  2494. Batch: 4
  2495. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2496. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2497. Batch Loss: 0.6666727662086487
  2498. Batch: 5
  2499. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2500. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2501. Batch Loss: 0.4933289885520935
  2502. Batch: 6
  2503. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2504. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2505. Batch Loss: 0.5943757891654968
  2506. Batch: 7
  2507. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2508. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2509. Batch Loss: 0.08241332322359085
  2510. Batch: 8
  2511. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2512. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2513. Batch Loss: 0.7599675059318542
  2514. Batch: 9
  2515. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2516. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2517. Batch Loss: 0.47389304637908936
  2518. Batch: 10
  2519. Error
  2520. Batch: 11
  2521. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2522. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2523. Batch Loss: 0.4395395517349243
  2524. Batch: 12
  2525. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2526. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2527. Batch Loss: 1.0464372634887695
  2528. Batch: 13
  2529. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2530. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2531. Batch Loss: 1.4584144353866577
  2532. Batch: 14
  2533. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2534. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2535. Batch Loss: 2.0163378715515137
  2536. Batch: 15
  2537. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2538. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2539. Batch Loss: 0.32722821831703186
  2540. Batch: 16
  2541. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2542. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2543. Batch Loss: 0.680080771446228
  2544. Batch: 17
  2545. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2546. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2547. Batch Loss: 0.6042599081993103
  2548. Batch: 18
  2549. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2550. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2551. Batch Loss: 0.45665523409843445
  2552. Batch: 19
  2553. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2554. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2555. Batch Loss: 0.2641598582267761
  2556. Batch: 20
  2557. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2558. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2559. Batch Loss: 0.10488580167293549
  2560. Batch: 21
  2561. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2562. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2563. Batch Loss: 0.8932242393493652
  2564. Batch: 22
  2565. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2566. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2567. Batch Loss: 1.0192949771881104
  2568. Batch: 23
  2569. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2570. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2571. Batch Loss: 0.8327299356460571
  2572. Batch: 24
  2573. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2574. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2575. Batch Loss: 0.9033570289611816
  2576. Batch: 25
  2577. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2578. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2579. Batch Loss: 0.640706479549408
  2580. Batch: 26
  2581. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2582. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2583. Batch Loss: 0.5829495191574097
  2584. Batch: 27
  2585. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2586. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2587. Batch Loss: 0.5127749443054199
  2588. Batch: 28
  2589. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2590. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2591. Batch Loss: 1.2604151964187622
  2592. Batch: 29
  2593. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2594. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2595. Batch Loss: 0.4759315252304077
  2596. Batch: 30
  2597. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2598. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2599. Batch Loss: 0.08241833001375198
  2600. Batch: 31
  2601. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2602. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2603. Batch Loss: 0.38639312982559204
  2604. Batch: 32
  2605. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2606. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2607. Batch Loss: 0.7945055961608887
  2608. Batch: 33
  2609. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2610. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2611. Batch Loss: 0.45493584871292114
  2612. Batch: 34
  2613. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2614. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2615. Batch Loss: 0.6043891310691833
  2616. Batch: 35
  2617. Error
  2618. Batch: 36
  2619. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2620. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2621. Batch Loss: 0.10301395505666733
  2622. Batch: 37
  2623. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2624. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2625. Batch Loss: 0.6180881857872009
  2626. Batch: 38
  2627. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2628. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2629. Batch Loss: 0.3217375874519348
  2630. Batch: 39
  2631. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2632. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2633. Batch Loss: 0.36055606603622437
  2634. Batch: 40
  2635. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2636. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2637. Batch Loss: 0.4996114671230316
  2638. Batch: 41
  2639. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2640. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2641. Batch Loss: 0.6788814067840576
  2642. Batch: 42
  2643. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2644. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2645. Batch Loss: 0.9394853711128235
  2646. Batch: 43
  2647. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2648. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2649. Batch Loss: 0.571834146976471
  2650. Batch: 44
  2651. Error
  2652. Batch: 45
  2653. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2654. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2655. Batch Loss: 0.8401619791984558
  2656. Batch: 46
  2657. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2658. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2659. Batch Loss: 1.845962405204773
  2660. Batch: 47
  2661. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2662. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2663. Batch Loss: 0.8935343623161316
  2664. Batch: 48
  2665. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2666. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2667. Batch Loss: 0.6590392589569092
  2668. Batch: 49
  2669. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2670. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2671. Batch Loss: 1.124898076057434
  2672. Batch: 50
  2673. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2674. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2675. Batch Loss: 0.6485705375671387
  2676. Batch: 51
  2677. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2678. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2679. Batch Loss: 0.057687435299158096
  2680. Batch: 52
  2681. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2682. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2683. Batch Loss: 1.3886370658874512
  2684. Batch: 53
  2685. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2686. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2687. Batch Loss: 0.3453896641731262
  2688. Batch: 54
  2689. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2690. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2691. Batch Loss: 0.780446469783783
  2692. Batch: 55
  2693. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2694. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2695. Batch Loss: 0.8722987174987793
  2696. Batch: 56
  2697. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2698. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2699. Batch Loss: 0.4601173400878906
  2700. Batch: 57
  2701. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2702. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2703. Batch Loss: 0.2996470034122467
  2704. Batch: 58
  2705. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2706. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2707. Batch Loss: 0.8053526878356934
  2708. Batch: 59
  2709. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2710. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2711. Batch Loss: 1.0868163108825684
  2712. Batch: 60
  2713. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2714. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2715. Batch Loss: 1.2142058610916138
  2716. Batch: 61
  2717. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2718. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2719. Batch Loss: 0.5797408819198608
  2720. Batch: 62
  2721. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2722. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2723. Batch Loss: 0.8574618101119995
  2724. Batch: 63
  2725. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2726. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2727. Batch Loss: 0.6691722869873047
  2728. Batch: 64
  2729. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2730. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2731. Batch Loss: 1.283566951751709
  2732. Batch: 65
  2733. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2734. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2735. Batch Loss: 0.7262375354766846
  2736. Batch: 66
  2737. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2738. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2739. Batch Loss: 0.41398435831069946
  2740. Batch: 67
  2741. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2742. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2743. Batch Loss: 0.1404801309108734
  2744. Batch: 68
  2745. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2746. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2747. Batch Loss: 0.3125988841056824
  2748. Batch: 69
  2749. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2750. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2751. Batch Loss: 0.5222074389457703
  2752. Batch: 70
  2753. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2754. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2755. Batch Loss: 1.270747423171997
  2756. Batch: 71
  2757. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2758. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2759. Batch Loss: 0.595139741897583
  2760. Batch: 72
  2761. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2762. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2763. Batch Loss: 0.5118536353111267
  2764. Batch: 73
  2765. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2766. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2767. Batch Loss: 0.8188916444778442
  2768. Batch: 74
  2769. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2770. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2771. Batch Loss: 0.19924595952033997
  2772. Batch: 75
  2773. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2774. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2775. Batch Loss: 0.25960999727249146
  2776. Batch: 76
  2777. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2778. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2779. Batch Loss: 0.20768290758132935
  2780. Batch: 77
  2781. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2782. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2783. Batch Loss: 0.19819048047065735
  2784. Batch: 78
  2785. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2786. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2787. Batch Loss: 1.139389991760254
  2788. Batch: 79
  2789. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2790. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2791. Batch Loss: 0.44930434226989746
  2792. Batch: 80
  2793. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2794. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2795. Batch Loss: 0.3044555187225342
  2796. Batch: 81
  2797. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2798. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2799. Batch Loss: 0.36056289076805115
  2800. Batch: 82
  2801. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2802. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2803. Batch Loss: 0.5042380094528198
  2804. Batch: 83
  2805. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2806. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2807. Batch Loss: 0.21043413877487183
  2808. Batch: 84
  2809. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2810. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2811. Batch Loss: 0.4058431088924408
  2812. Batch: 85
  2813. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2814. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2815. Batch Loss: 0.26538652181625366
  2816. Batch: 86
  2817. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2818. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2819. Batch Loss: 0.8709694147109985
  2820. Batch: 87
  2821. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2822. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2823. Batch Loss: 0.24289165437221527
  2824. Batch: 88
  2825. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2826. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2827. Batch Loss: 0.06656099855899811
  2828. Batch: 89
  2829. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2830. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2831. Batch Loss: 1.081365704536438
  2832. Batch: 90
  2833. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2834. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2835. Batch Loss: 1.1650922298431396
  2836. Batch: 91
  2837. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2838. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2839. Batch Loss: 0.42945215106010437
  2840. Batch: 92
  2841. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2842. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2843. Batch Loss: 0.25402122735977173
  2844. Batch: 93
  2845. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2846. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2847. Batch Loss: 0.13635703921318054
  2848. Batch: 94
  2849. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2850. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2851. Batch Loss: 0.6014596223831177
  2852. Batch: 95
  2853. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2854. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2855. Batch Loss: 0.9129011631011963
  2856. Batch: 96
  2857. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2858. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2859. Batch Loss: 0.39636820554733276
  2860. Batch: 97
  2861. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2862. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2863. Batch Loss: 0.8984119892120361
  2864. Batch: 98
  2865. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2866. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2867. Batch Loss: 0.16482236981391907
  2868. Batch: 99
  2869. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2870. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2871. Batch Loss: 0.4279031455516815
  2872. Batch: 100
  2873. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2874. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2875. Batch Loss: 0.566428542137146
  2876. Batch: 101
  2877. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2878. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2879. Batch Loss: 0.4622645974159241
  2880. Batch: 102
  2881. Error
  2882. Batch: 103
  2883. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2884. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2885. Batch Loss: 0.36261290311813354
  2886. Batch: 104
  2887. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2888. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2889. Batch Loss: 0.9044058322906494
  2890. Batch: 105
  2891. Error
  2892. Batch: 106
  2893. Error
  2894. Batch: 107
  2895. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2896. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2897. Batch Loss: 2.3467931747436523
  2898. Batch: 108
  2899. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2900. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2901. Batch Loss: 0.17750409245491028
  2902. Batch: 109
  2903. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2904. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2905. Batch Loss: 0.30156418681144714
  2906. Batch: 110
  2907. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2908. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2909. Batch Loss: 0.2724047899246216
  2910. Batch: 111
  2911. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2912. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2913. Batch Loss: 0.5294079780578613
  2914. Batch: 112
  2915. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2916. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2917. Batch Loss: 0.24772390723228455
  2918. Batch: 113
  2919. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2920. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2921. Batch Loss: 0.05768502131104469
  2922. Batch: 114
  2923. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2924. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2925. Batch Loss: 0.6302156448364258
  2926. Batch: 115
  2927. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2928. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2929. Batch Loss: 0.7567689418792725
  2930. Batch: 116
  2931. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2932. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2933. Batch Loss: 0.7388069033622742
  2934. Batch: 117
  2935. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2936. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2937. Batch Loss: 0.46236443519592285
  2938. Batch: 118
  2939. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2940. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2941. Batch Loss: 1.1305345296859741
  2942. Batch: 119
  2943. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2944. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2945. Batch Loss: 0.4193326234817505
  2946. Batch: 120
  2947. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2948. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2949. Batch Loss: 0.5682539939880371
  2950. Batch: 121
  2951. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2952. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2953. Batch Loss: 1.0713679790496826
  2954. Batch: 122
  2955. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2956. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2957. Batch Loss: 0.5109177231788635
  2958. Batch: 123
  2959. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2960. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2961. Batch Loss: 0.49997276067733765
  2962. Batch: 124
  2963. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2964. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2965. Batch Loss: 0.6521342992782593
  2966. Epoch 7/10
  2967. Batch: 0
  2968. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2969. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2970. Batch Loss: 0.5344933271408081
  2971. Batch: 1
  2972. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2973. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2974. Batch Loss: 0.32173314690589905
  2975. Batch: 2
  2976. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2977. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2978. Batch Loss: 0.43267130851745605
  2979. Batch: 3
  2980. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2981. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2982. Batch Loss: 0.260547935962677
  2983. Batch: 4
  2984. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2985. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2986. Batch Loss: 1.6482957601547241
  2987. Batch: 5
  2988. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2989. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2990. Batch Loss: 0.6272170543670654
  2991. Batch: 6
  2992. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2993. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2994. Batch Loss: 0.6908732652664185
  2995. Batch: 7
  2996. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  2997. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  2998. Batch Loss: 0.5238074660301208
  2999. Batch: 8
  3000. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3001. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3002. Batch Loss: 0.7714064717292786
  3003. Batch: 9
  3004. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3005. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3006. Batch Loss: 0.33397653698921204
  3007. Batch: 10
  3008. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3009. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3010. Batch Loss: 0.731061577796936
  3011. Batch: 11
  3012. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3013. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3014. Batch Loss: 0.31730198860168457
  3015. Batch: 12
  3016. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3017. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3018. Batch Loss: 0.5918083190917969
  3019. Batch: 13
  3020. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3021. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3022. Batch Loss: 0.849858283996582
  3023. Batch: 14
  3024. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3025. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3026. Batch Loss: 0.7336049675941467
  3027. Batch: 15
  3028. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3029. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3030. Batch Loss: 0.6825923919677734
  3031. Batch: 16
  3032. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3033. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3034. Batch Loss: 1.1246528625488281
  3035. Batch: 17
  3036. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3037. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3038. Batch Loss: 0.5800769925117493
  3039. Batch: 18
  3040. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3041. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3042. Batch Loss: 0.9626617431640625
  3043. Batch: 19
  3044. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3045. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3046. Batch Loss: 0.4195582866668701
  3047. Batch: 20
  3048. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3049. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3050. Batch Loss: 0.5135859251022339
  3051. Batch: 21
  3052. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3053. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3054. Batch Loss: 0.576809823513031
  3055. Batch: 22
  3056. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3057. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3058. Batch Loss: 1.15380859375
  3059. Batch: 23
  3060. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3061. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3062. Batch Loss: 0.4944906234741211
  3063. Batch: 24
  3064. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3065. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3066. Batch Loss: 0.668677031993866
  3067. Batch: 25
  3068. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3069. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3070. Batch Loss: 0.8478403091430664
  3071. Batch: 26
  3072. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3073. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3074. Batch Loss: 0.6730390787124634
  3075. Batch: 27
  3076. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3077. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3078. Batch Loss: 0.6083324551582336
  3079. Batch: 28
  3080. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3081. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3082. Batch Loss: 0.15037256479263306
  3083. Batch: 29
  3084. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3085. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3086. Batch Loss: 0.0
  3087. Batch: 30
  3088. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3089. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3090. Batch Loss: 0.5440798997879028
  3091. Batch: 31
  3092. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3093. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3094. Batch Loss: 1.0522446632385254
  3095. Batch: 32
  3096. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3097. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3098. Batch Loss: 1.262948989868164
  3099. Batch: 33
  3100. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3101. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3102. Batch Loss: 0.14422261714935303
  3103. Batch: 34
  3104. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3105. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3106. Batch Loss: 0.1821753829717636
  3107. Batch: 35
  3108. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3109. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3110. Batch Loss: 0.2884156107902527
  3111. Batch: 36
  3112. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3113. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3114. Batch Loss: 0.5040158033370972
  3115. Batch: 37
  3116. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3117. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3118. Batch Loss: 0.7760797739028931
  3119. Batch: 38
  3120. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3121. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3122. Batch Loss: 0.4968183636665344
  3123. Batch: 39
  3124. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3125. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3126. Batch Loss: 0.18722890317440033
  3127. Batch: 40
  3128. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3129. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3130. Batch Loss: 0.4326663315296173
  3131. Batch: 41
  3132. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3133. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3134. Batch Loss: 0.19228464365005493
  3135. Batch: 42
  3136. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3137. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3138. Batch Loss: 0.6388431787490845
  3139. Batch: 43
  3140. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3141. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3142. Batch Loss: 0.14421185851097107
  3143. Batch: 44
  3144. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3145. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3146. Batch Loss: 1.1297365427017212
  3147. Batch: 45
  3148. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3149. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3150. Batch Loss: 0.28203150629997253
  3151. Batch: 46
  3152. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3153. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3154. Batch Loss: 0.9812024831771851
  3155. Batch: 47
  3156. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3157. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3158. Batch Loss: 0.14423015713691711
  3159. Batch: 48
  3160. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3161. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3162. Batch Loss: 0.8268833160400391
  3163. Batch: 49
  3164. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3165. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3166. Batch Loss: 0.5903046727180481
  3167. Batch: 50
  3168. Error
  3169. Batch: 51
  3170. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3171. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3172. Batch Loss: 0.44505831599235535
  3173. Batch: 52
  3174. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3175. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3176. Batch Loss: 0.5980119705200195
  3177. Batch: 53
  3178. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3179. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3180. Batch Loss: 1.0225470066070557
  3181. Batch: 54
  3182. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3183. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3184. Batch Loss: 0.23173290491104126
  3185. Batch: 55
  3186. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3187. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3188. Batch Loss: 0.40232181549072266
  3189. Batch: 56
  3190. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3191. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3192. Batch Loss: 0.8538024425506592
  3193. Batch: 57
  3194. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3195. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3196. Batch Loss: 0.42345815896987915
  3197. Batch: 58
  3198. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3199. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3200. Batch Loss: 0.6244103312492371
  3201. Batch: 59
  3202. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3203. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3204. Batch Loss: 0.7517243027687073
  3205. Batch: 60
  3206. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3207. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3208. Batch Loss: 1.098273754119873
  3209. Batch: 61
  3210. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3211. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3212. Batch Loss: 0.16483630239963531
  3213. Batch: 62
  3214. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3215. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3216. Batch Loss: 0.6233187913894653
  3217. Batch: 63
  3218. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3219. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3220. Batch Loss: 0.41946467757225037
  3221. Batch: 64
  3222. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3223. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3224. Batch Loss: 1.5719823837280273
  3225. Batch: 65
  3226. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3227. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3228. Batch Loss: 0.22890393435955048
  3229. Batch: 66
  3230. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3231. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3232. Batch Loss: 0.8847097158432007
  3233. Batch: 67
  3234. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3235. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3236. Batch Loss: 0.9059339165687561
  3237. Batch: 68
  3238. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3239. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3240. Batch Loss: 0.1153717041015625
  3241. Batch: 69
  3242. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3243. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3244. Batch Loss: 0.5635969638824463
  3245. Batch: 70
  3246. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3247. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3248. Batch Loss: 0.37783920764923096
  3249. Batch: 71
  3250. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3251. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3252. Batch Loss: 0.9441249966621399
  3253. Batch: 72
  3254. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3255. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3256. Batch Loss: 0.28583627939224243
  3257. Batch: 73
  3258. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3259. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3260. Batch Loss: 0.20191261172294617
  3261. Batch: 74
  3262. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3263. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3264. Batch Loss: 1.3351415395736694
  3265. Batch: 75
  3266. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3267. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3268. Batch Loss: 0.974639892578125
  3269. Batch: 76
  3270. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3271. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3272. Batch Loss: 0.11166210472583771
  3273. Batch: 77
  3274. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3275. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3276. Batch Loss: 0.7714897394180298
  3277. Batch: 78
  3278. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3279. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3280. Batch Loss: 0.49572113156318665
  3281. Batch: 79
  3282. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3283. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3284. Batch Loss: 0.38037872314453125
  3285. Batch: 80
  3286. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3287. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3288. Batch Loss: 0.6979902982711792
  3289. Batch: 81
  3290. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3291. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3292. Batch Loss: 0.647039532661438
  3293. Batch: 82
  3294. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3295. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3296. Batch Loss: 0.9106612205505371
  3297. Batch: 83
  3298. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3299. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3300. Batch Loss: 0.2699090540409088
  3301. Batch: 84
  3302. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3303. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3304. Batch Loss: 0.562467098236084
  3305. Batch: 85
  3306. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3307. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3308. Batch Loss: 0.6885561347007751
  3309. Batch: 86
  3310. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3311. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3312. Batch Loss: 0.7772623896598816
  3313. Batch: 87
  3314. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3315. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3316. Batch Loss: 0.37106671929359436
  3317. Batch: 88
  3318. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3319. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3320. Batch Loss: 0.32956793904304504
  3321. Batch: 89
  3322. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3323. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3324. Batch Loss: 0.7847123742103577
  3325. Batch: 90
  3326. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3327. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3328. Batch Loss: 1.0046944618225098
  3329. Batch: 91
  3330. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3331. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3332. Batch Loss: 0.49612224102020264
  3333. Batch: 92
  3334. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3335. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3336. Batch Loss: 1.1047985553741455
  3337. Batch: 93
  3338. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3339. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3340. Batch Loss: 0.6188446879386902
  3341. Batch: 94
  3342. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3343. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3344. Batch Loss: 1.0529016256332397
  3345. Batch: 95
  3346. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3347. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3348. Batch Loss: 0.7884951829910278
  3349. Batch: 96
  3350. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3351. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3352. Batch Loss: 0.5473349094390869
  3353. Batch: 97
  3354. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3355. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3356. Batch Loss: 0.24952289462089539
  3357. Batch: 98
  3358. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3359. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3360. Batch Loss: 0.5695134997367859
  3361. Batch: 99
  3362. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3363. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3364. Batch Loss: 0.9201067686080933
  3365. Batch: 100
  3366. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3367. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3368. Batch Loss: 0.6526135206222534
  3369. Batch: 101
  3370. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3371. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3372. Batch Loss: 0.0
  3373. Batch: 102
  3374. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3375. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3376. Batch Loss: 0.424051433801651
  3377. Batch: 103
  3378. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3379. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3380. Batch Loss: 0.4026048481464386
  3381. Batch: 104
  3382. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3383. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3384. Batch Loss: 0.7551800608634949
  3385. Batch: 105
  3386. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3387. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3388. Batch Loss: 0.34418338537216187
  3389. Batch: 106
  3390. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3391. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3392. Batch Loss: 0.9205433130264282
  3393. Batch: 107
  3394. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3395. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3396. Batch Loss: 0.7393696904182434
  3397. Batch: 108
  3398. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3399. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3400. Batch Loss: 0.38460034132003784
  3401. Batch: 109
  3402. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3403. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3404. Batch Loss: 0.5467325448989868
  3405. Batch: 110
  3406. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3407. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3408. Batch Loss: 0.6596071124076843
  3409. Batch: 111
  3410. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3411. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3412. Batch Loss: 0.6526113748550415
  3413. Batch: 112
  3414. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3415. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3416. Batch Loss: 1.8067023754119873
  3417. Batch: 113
  3418. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3419. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3420. Batch Loss: 0.7691866159439087
  3421. Batch: 114
  3422. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3423. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3424. Batch Loss: 1.3061504364013672
  3425. Batch: 115
  3426. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3427. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3428. Batch Loss: 0.27913954854011536
  3429. Batch: 116
  3430. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3431. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3432. Batch Loss: 0.8720118999481201
  3433. Batch: 117
  3434. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3435. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3436. Batch Loss: 0.7150678634643555
  3437. Batch: 118
  3438. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3439. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3440. Batch Loss: 0.5696760416030884
  3441. Batch: 119
  3442. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3443. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3444. Batch Loss: 0.8718154430389404
  3445. Batch: 120
  3446. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3447. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3448. Batch Loss: 0.8320630788803101
  3449. Batch: 121
  3450. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3451. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3452. Batch Loss: 0.46800559759140015
  3453. Batch: 122
  3454. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3455. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3456. Batch Loss: 0.1573297381401062
  3457. Batch: 123
  3458. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3459. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3460. Batch Loss: 1.080875039100647
  3461. Batch: 124
  3462. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3463. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3464. Batch Loss: 0.6168820261955261
  3465. Epoch 8/10
  3466. Batch: 0
  3467. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3468. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3469. Batch Loss: 0.6568893194198608
  3470. Batch: 1
  3471. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3472. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3473. Batch Loss: 0.8045917749404907
  3474. Batch: 2
  3475. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3476. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3477. Batch Loss: 0.48456981778144836
  3478. Batch: 3
  3479. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3480. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3481. Batch Loss: 0.8109951615333557
  3482. Batch: 4
  3483. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3484. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3485. Batch Loss: 1.3062421083450317
  3486. Batch: 5
  3487. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3488. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3489. Batch Loss: 0.09614618122577667
  3490. Batch: 6
  3491. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3492. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3493. Batch Loss: 0.7282026410102844
  3494. Batch: 7
  3495. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3496. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3497. Batch Loss: 0.4679592251777649
  3498. Batch: 8
  3499. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3500. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3501. Batch Loss: 0.6842526793479919
  3502. Batch: 9
  3503. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3504. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3505. Batch Loss: 1.009570598602295
  3506. Batch: 10
  3507. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3508. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3509. Batch Loss: 0.19229160249233246
  3510. Batch: 11
  3511. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3512. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3513. Batch Loss: 0.9848917722702026
  3514. Batch: 12
  3515. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3516. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3517. Batch Loss: 0.7953740954399109
  3518. Batch: 13
  3519. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3520. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3521. Batch Loss: 0.35502538084983826
  3522. Batch: 14
  3523. Error
  3524. Batch: 15
  3525. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3526. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3527. Batch Loss: 0.12145349383354187
  3528. Batch: 16
  3529. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3530. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3531. Batch Loss: 1.2337255477905273
  3532. Batch: 17
  3533. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3534. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3535. Batch Loss: 0.6238337159156799
  3536. Batch: 18
  3537. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3538. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3539. Batch Loss: 0.26441600918769836
  3540. Batch: 19
  3541. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3542. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3543. Batch Loss: 0.6518197059631348
  3544. Batch: 20
  3545. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3546. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3547. Batch Loss: 0.6200940608978271
  3548. Batch: 21
  3549. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3550. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3551. Batch Loss: 0.0
  3552. Batch: 22
  3553. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3554. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3555. Batch Loss: 0.8779008388519287
  3556. Batch: 23
  3557. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3558. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3559. Batch Loss: 0.3714977204799652
  3560. Batch: 24
  3561. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3562. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3563. Batch Loss: 0.9294655919075012
  3564. Batch: 25
  3565. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3566. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3567. Batch Loss: 0.0
  3568. Batch: 26
  3569. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3570. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3571. Batch Loss: 0.29840096831321716
  3572. Batch: 27
  3573. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3574. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3575. Batch Loss: 0.12361302226781845
  3576. Batch: 28
  3577. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3578. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3579. Batch Loss: 0.36449864506721497
  3580. Batch: 29
  3581. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3582. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3583. Batch Loss: 0.519143283367157
  3584. Batch: 30
  3585. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3586. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3587. Batch Loss: 0.36536020040512085
  3588. Batch: 31
  3589. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3590. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3591. Batch Loss: 0.7383953332901001
  3592. Batch: 32
  3593. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3594. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3595. Batch Loss: 0.8049402832984924
  3596. Batch: 33
  3597. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3598. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3599. Batch Loss: 0.8258803486824036
  3600. Batch: 34
  3601. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3602. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3603. Batch Loss: 1.665472388267517
  3604. Batch: 35
  3605. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3606. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3607. Batch Loss: 1.1649491786956787
  3608. Batch: 36
  3609. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3610. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3611. Batch Loss: 1.382983922958374
  3612. Batch: 37
  3613. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3614. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3615. Batch Loss: 0.6192185878753662
  3616. Batch: 38
  3617. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3618. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3619. Batch Loss: 0.5896351933479309
  3620. Batch: 39
  3621. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3622. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3623. Batch Loss: 0.5177075862884521
  3624. Batch: 40
  3625. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3626. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3627. Batch Loss: 0.40792927145957947
  3628. Batch: 41
  3629. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3630. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3631. Batch Loss: 0.11935115605592728
  3632. Batch: 42
  3633. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3634. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3635. Batch Loss: 0.8718539476394653
  3636. Batch: 43
  3637. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3638. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3639. Batch Loss: 0.8557208776473999
  3640. Batch: 44
  3641. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3642. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3643. Batch Loss: 1.0069327354431152
  3644. Batch: 45
  3645. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3646. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3647. Batch Loss: 0.7532863616943359
  3648. Batch: 46
  3649. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3650. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3651. Batch Loss: 0.38110071420669556
  3652. Batch: 47
  3653. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3654. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3655. Batch Loss: 1.0235415697097778
  3656. Batch: 48
  3657. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3658. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3659. Batch Loss: 0.2769177258014679
  3660. Batch: 49
  3661. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3662. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3663. Batch Loss: 0.409635066986084
  3664. Batch: 50
  3665. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3666. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3667. Batch Loss: 0.7096498012542725
  3668. Batch: 51
  3669. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3670. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3671. Batch Loss: 0.5223997831344604
  3672. Batch: 52
  3673. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3674. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3675. Batch Loss: 0.29669153690338135
  3676. Batch: 53
  3677. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3678. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3679. Batch Loss: 0.7860143780708313
  3680. Batch: 54
  3681. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3682. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3683. Batch Loss: 0.576876163482666
  3684. Batch: 55
  3685. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3686. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3687. Batch Loss: 0.34278786182403564
  3688. Batch: 56
  3689. Error
  3690. Batch: 57
  3691. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3692. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3693. Batch Loss: 0.46194833517074585
  3694. Batch: 58
  3695. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3696. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3697. Batch Loss: 0.7372310161590576
  3698. Batch: 59
  3699. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3700. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3701. Batch Loss: 0.30394625663757324
  3702. Batch: 60
  3703. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3704. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3705. Batch Loss: 0.8488500118255615
  3706. Batch: 61
  3707. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3708. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3709. Batch Loss: 0.649250864982605
  3710. Batch: 62
  3711. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3712. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3713. Batch Loss: 0.8697556853294373
  3714. Batch: 63
  3715. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3716. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3717. Batch Loss: 0.5396344661712646
  3718. Batch: 64
  3719. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3720. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3721. Batch Loss: 0.8099991083145142
  3722. Batch: 65
  3723. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3724. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3725. Batch Loss: 3.017470359802246
  3726. Batch: 66
  3727. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3728. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3729. Batch Loss: 0.6138456463813782
  3730. Batch: 67
  3731. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3732. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3733. Batch Loss: 1.3543851375579834
  3734. Batch: 68
  3735. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3736. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3737. Batch Loss: 0.32451730966567993
  3738. Batch: 69
  3739. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3740. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3741. Batch Loss: 0.2940172553062439
  3742. Batch: 70
  3743. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3744. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3745. Batch Loss: 0.6004223823547363
  3746. Batch: 71
  3747. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3748. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3749. Batch Loss: 0.6812889575958252
  3750. Batch: 72
  3751. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3752. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3753. Batch Loss: 1.0889700651168823
  3754. Batch: 73
  3755. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3756. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3757. Batch Loss: 1.3124282360076904
  3758. Batch: 74
  3759. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3760. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3761. Batch Loss: 0.5519167184829712
  3762. Batch: 75
  3763. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3764. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3765. Batch Loss: 0.757331132888794
  3766. Batch: 76
  3767. Error
  3768. Batch: 77
  3769. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3770. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3771. Batch Loss: 0.5901093482971191
  3772. Batch: 78
  3773. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3774. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3775. Batch Loss: 0.5347081422805786
  3776. Batch: 79
  3777. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3778. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3779. Batch Loss: 0.6238465905189514
  3780. Batch: 80
  3781. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3782. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3783. Batch Loss: 3.0383763313293457
  3784. Batch: 81
  3785. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3786. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3787. Batch Loss: 0.3547956347465515
  3788. Batch: 82
  3789. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3790. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3791. Batch Loss: 1.278642177581787
  3792. Batch: 83
  3793. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3794. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3795. Batch Loss: 0.21191361546516418
  3796. Batch: 84
  3797. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3798. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3799. Batch Loss: 0.22814206779003143
  3800. Batch: 85
  3801. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3802. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3803. Batch Loss: 1.2144943475723267
  3804. Batch: 86
  3805. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3806. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3807. Batch Loss: 0.8954859972000122
  3808. Batch: 87
  3809. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3810. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3811. Batch Loss: 0.35827916860580444
  3812. Batch: 88
  3813. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3814. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3815. Batch Loss: 0.346129447221756
  3816. Batch: 89
  3817. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3818. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3819. Batch Loss: 0.7376165390014648
  3820. Batch: 90
  3821. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3822. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3823. Batch Loss: 0.7202056646347046
  3824. Batch: 91
  3825. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3826. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3827. Batch Loss: 0.2567553222179413
  3828. Batch: 92
  3829. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3830. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3831. Batch Loss: 0.5088526010513306
  3832. Batch: 93
  3833. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3834. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3835. Batch Loss: 0.3731154799461365
  3836. Batch: 94
  3837. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3838. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3839. Batch Loss: 0.8054153919219971
  3840. Batch: 95
  3841. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3842. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3843. Batch Loss: 0.3230556845664978
  3844. Batch: 96
  3845. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3846. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3847. Batch Loss: 0.4944888949394226
  3848. Batch: 97
  3849. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3850. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3851. Batch Loss: 0.8220988512039185
  3852. Batch: 98
  3853. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3854. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3855. Batch Loss: 0.38552361726760864
  3856. Batch: 99
  3857. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3858. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3859. Batch Loss: 0.0
  3860. Batch: 100
  3861. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3862. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3863. Batch Loss: 0.15733161568641663
  3864. Batch: 101
  3865. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3866. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3867. Batch Loss: 0.17606478929519653
  3868. Batch: 102
  3869. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3870. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3871. Batch Loss: 0.2891421318054199
  3872. Batch: 103
  3873. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3874. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3875. Batch Loss: 0.3552209734916687
  3876. Batch: 104
  3877. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3878. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3879. Batch Loss: 0.5434703230857849
  3880. Batch: 105
  3881. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3882. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3883. Batch Loss: 0.440895140171051
  3884. Batch: 106
  3885. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3886. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3887. Batch Loss: 0.969868540763855
  3888. Batch: 107
  3889. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3890. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3891. Batch Loss: 0.3865986466407776
  3892. Batch: 108
  3893. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3894. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3895. Batch Loss: 0.589996337890625
  3896. Batch: 109
  3897. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3898. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3899. Batch Loss: 0.3582358658313751
  3900. Batch: 110
  3901. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3902. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3903. Batch Loss: 0.7287222146987915
  3904. Batch: 111
  3905. Error
  3906. Batch: 112
  3907. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3908. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3909. Batch Loss: 0.8029482364654541
  3910. Batch: 113
  3911. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3912. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3913. Batch Loss: 0.36881983280181885
  3914. Batch: 114
  3915. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3916. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3917. Batch Loss: 0.39705637097358704
  3918. Batch: 115
  3919. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3920. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3921. Batch Loss: 0.7227243185043335
  3922. Batch: 116
  3923. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3924. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3925. Batch Loss: 0.4845777153968811
  3926. Batch: 117
  3927. Error
  3928. Batch: 118
  3929. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3930. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3931. Batch Loss: 0.43129369616508484
  3932. Batch: 119
  3933. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3934. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3935. Batch Loss: 0.6437532305717468
  3936. Batch: 120
  3937. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3938. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3939. Batch Loss: 0.6173020601272583
  3940. Batch: 121
  3941. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3942. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3943. Batch Loss: 1.3574254512786865
  3944. Batch: 122
  3945. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3946. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3947. Batch Loss: 0.7533405423164368
  3948. Batch: 123
  3949. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3950. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3951. Batch Loss: 0.4100012481212616
  3952. Batch: 124
  3953. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3954. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3955. Batch Loss: 0.317295104265213
  3956. Epoch 9/10
  3957. Batch: 0
  3958. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3959. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3960. Batch Loss: 0.7345656156539917
  3961. Batch: 1
  3962. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3963. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3964. Batch Loss: 0.6730391979217529
  3965. Batch: 2
  3966. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3967. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3968. Batch Loss: 2.1718015670776367
  3969. Batch: 3
  3970. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3971. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3972. Batch Loss: 0.4413965344429016
  3973. Batch: 4
  3974. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3975. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3976. Batch Loss: 0.31171685457229614
  3977. Batch: 5
  3978. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3979. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3980. Batch Loss: 1.2016597986221313
  3981. Batch: 6
  3982. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3983. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3984. Batch Loss: 0.5527026057243347
  3985. Batch: 7
  3986. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3987. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3988. Batch Loss: 0.5192282795906067
  3989. Batch: 8
  3990. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3991. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3992. Batch Loss: 0.9264284372329712
  3993. Batch: 9
  3994. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3995. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  3996. Batch Loss: 0.5091806054115295
  3997. Batch: 10
  3998. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  3999. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4000. Batch Loss: 0.5257461071014404
  4001. Batch: 11
  4002. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4003. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4004. Batch Loss: 0.31729334592819214
  4005. Batch: 12
  4006. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4007. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4008. Batch Loss: 0.4063711166381836
  4009. Batch: 13
  4010. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4011. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4012. Batch Loss: 0.842191219329834
  4013. Batch: 14
  4014. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4015. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4016. Batch Loss: 0.5052682757377625
  4017. Batch: 15
  4018. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4019. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4020. Batch Loss: 0.19280755519866943
  4021. Batch: 16
  4022. Error
  4023. Batch: 17
  4024. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4025. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4026. Batch Loss: 0.8004270792007446
  4027. Batch: 18
  4028. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4029. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4030. Batch Loss: 0.20978474617004395
  4031. Batch: 19
  4032. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4033. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4034. Batch Loss: 0.37367379665374756
  4035. Batch: 20
  4036. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4037. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4038. Batch Loss: 0.7313725352287292
  4039. Batch: 21
  4040. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4041. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4042. Batch Loss: 1.100931167602539
  4043. Batch: 22
  4044. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4045. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4046. Batch Loss: 0.40718942880630493
  4047. Batch: 23
  4048. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4049. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4050. Batch Loss: 0.767785906791687
  4051. Batch: 24
  4052. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4053. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4054. Batch Loss: 1.5767652988433838
  4055. Batch: 25
  4056. Error
  4057. Batch: 26
  4058. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4059. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4060. Batch Loss: 0.6517310738563538
  4061. Batch: 27
  4062. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4063. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4064. Batch Loss: 0.7123125195503235
  4065. Batch: 28
  4066. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4067. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4068. Batch Loss: 0.7652304172515869
  4069. Batch: 29
  4070. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4071. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4072. Batch Loss: 0.2641660273075104
  4073. Batch: 30
  4074. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4075. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4076. Batch Loss: 0.33636242151260376
  4077. Batch: 31
  4078. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4079. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4080. Batch Loss: 0.7447634339332581
  4081. Batch: 32
  4082. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4083. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4084. Batch Loss: 0.964715838432312
  4085. Batch: 33
  4086. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4087. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4088. Batch Loss: 0.18063151836395264
  4089. Batch: 34
  4090. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4091. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4092. Batch Loss: 0.9044499397277832
  4093. Batch: 35
  4094. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4095. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4096. Batch Loss: 0.47897177934646606
  4097. Batch: 36
  4098. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4099. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4100. Batch Loss: 0.7158205509185791
  4101. Batch: 37
  4102. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4103. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4104. Batch Loss: 1.0137046575546265
  4105. Batch: 38
  4106. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4107. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4108. Batch Loss: 0.33767205476760864
  4109. Batch: 39
  4110. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4111. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4112. Batch Loss: 0.73110431432724
  4113. Batch: 40
  4114. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4115. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4116. Batch Loss: 0.6517393589019775
  4117. Batch: 41
  4118. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4119. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4120. Batch Loss: 0.5126274824142456
  4121. Batch: 42
  4122. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4123. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4124. Batch Loss: 1.0135185718536377
  4125. Batch: 43
  4126. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4127. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4128. Batch Loss: 0.3970211148262024
  4129. Batch: 44
  4130. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4131. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4132. Batch Loss: 1.4303746223449707
  4133. Batch: 45
  4134. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4135. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4136. Batch Loss: 0.2810763716697693
  4137. Batch: 46
  4138. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4139. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4140. Batch Loss: 0.0
  4141. Batch: 47
  4142. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4143. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4144. Batch Loss: 1.0480544567108154
  4145. Batch: 48
  4146. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4147. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4148. Batch Loss: 0.49821123480796814
  4149. Batch: 49
  4150. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4151. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4152. Batch Loss: 0.0
  4153. Batch: 50
  4154. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4155. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4156. Batch Loss: 0.7211185693740845
  4157. Batch: 51
  4158. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4159. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4160. Batch Loss: 0.918916642665863
  4161. Batch: 52
  4162. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4163. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4164. Batch Loss: 0.3085004985332489
  4165. Batch: 53
  4166. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4167. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4168. Batch Loss: 0.7951086163520813
  4169. Batch: 54
  4170. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4171. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4172. Batch Loss: 0.6742643117904663
  4173. Batch: 55
  4174. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4175. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4176. Batch Loss: 0.3743208646774292
  4177. Batch: 56
  4178. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4179. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4180. Batch Loss: 0.9442601799964905
  4181. Batch: 57
  4182. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4183. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4184. Batch Loss: 0.4790322482585907
  4185. Batch: 58
  4186. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4187. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4188. Batch Loss: 0.5724614262580872
  4189. Batch: 59
  4190. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4191. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4192. Batch Loss: 0.7444860935211182
  4193. Batch: 60
  4194. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4195. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4196. Batch Loss: 0.904697060585022
  4197. Batch: 61
  4198. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4199. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4200. Batch Loss: 0.2428647130727768
  4201. Batch: 62
  4202. Error
  4203. Batch: 63
  4204. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4205. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4206. Batch Loss: 1.4081653356552124
  4207. Batch: 64
  4208. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4209. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4210. Batch Loss: 1.3708758354187012
  4211. Batch: 65
  4212. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4213. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4214. Batch Loss: 0.44867634773254395
  4215. Batch: 66
  4216. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4217. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4218. Batch Loss: 0.544798731803894
  4219. Batch: 67
  4220. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4221. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4222. Batch Loss: 1.2567532062530518
  4223. Batch: 68
  4224. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4225. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4226. Batch Loss: 0.5811418294906616
  4227. Batch: 69
  4228. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4229. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4230. Batch Loss: 0.1992332637310028
  4231. Batch: 70
  4232. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4233. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4234. Batch Loss: 0.7944881916046143
  4235. Batch: 71
  4236. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4237. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4238. Batch Loss: 1.02068030834198
  4239. Batch: 72
  4240. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4241. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4242. Batch Loss: 1.2021524906158447
  4243. Batch: 73
  4244. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4245. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4246. Batch Loss: 0.17276522517204285
  4247. Batch: 74
  4248. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4249. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4250. Batch Loss: 0.558301568031311
  4251. Batch: 75
  4252. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4253. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4254. Batch Loss: 0.6207790970802307
  4255. Batch: 76
  4256. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4257. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4258. Batch Loss: 0.6149213314056396
  4259. Batch: 77
  4260. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4261. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4262. Batch Loss: 1.213158369064331
  4263. Batch: 78
  4264. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4265. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4266. Batch Loss: 0.4250856935977936
  4267. Batch: 79
  4268. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4269. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4270. Batch Loss: 0.28850701451301575
  4271. Batch: 80
  4272. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4273. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4274. Batch Loss: 0.9530126452445984
  4275. Batch: 81
  4276. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4277. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4278. Batch Loss: 1.2853034734725952
  4279. Batch: 82
  4280. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4281. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4282. Batch Loss: 0.5403205156326294
  4283. Batch: 83
  4284. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4285. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4286. Batch Loss: 0.10815663635730743
  4287. Batch: 84
  4288. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4289. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4290. Batch Loss: 0.20768165588378906
  4291. Batch: 85
  4292. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4293. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4294. Batch Loss: 1.0576233863830566
  4295. Batch: 86
  4296. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4297. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4298. Batch Loss: 0.17103588581085205
  4299. Batch: 87
  4300. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4301. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4302. Batch Loss: 1.1159979104995728
  4303. Batch: 88
  4304. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4305. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4306. Batch Loss: 0.8412510752677917
  4307. Batch: 89
  4308. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4309. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4310. Batch Loss: 0.2591487169265747
  4311. Batch: 90
  4312. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4313. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4314. Batch Loss: 0.40780162811279297
  4315. Batch: 91
  4316. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4317. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4318. Batch Loss: 0.6323535442352295
  4319. Batch: 92
  4320. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4321. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4322. Batch Loss: 0.9930872917175293
  4323. Batch: 93
  4324. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4325. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4326. Batch Loss: 0.5573930144309998
  4327. Batch: 94
  4328. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4329. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4330. Batch Loss: 0.8268994688987732
  4331. Batch: 95
  4332. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4333. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4334. Batch Loss: 0.8402301669120789
  4335. Batch: 96
  4336. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4337. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4338. Batch Loss: 0.9913444519042969
  4339. Batch: 97
  4340. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4341. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4342. Batch Loss: 0.0
  4343. Batch: 98
  4344. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4345. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4346. Batch Loss: 0.44796568155288696
  4347. Batch: 99
  4348. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4349. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4350. Batch Loss: 0.5628897547721863
  4351. Batch: 100
  4352. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4353. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4354. Batch Loss: 0.6278419494628906
  4355. Batch: 101
  4356. Error
  4357. Batch: 102
  4358. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4359. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4360. Batch Loss: 0.42935559153556824
  4361. Batch: 103
  4362. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4363. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4364. Batch Loss: 0.6947746276855469
  4365. Batch: 104
  4366. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4367. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4368. Batch Loss: 0.44230809807777405
  4369. Batch: 105
  4370. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4371. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4372. Batch Loss: 0.8535305261611938
  4373. Batch: 106
  4374. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4375. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4376. Batch Loss: 0.2270166426897049
  4377. Batch: 107
  4378. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4379. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4380. Batch Loss: 1.3484891653060913
  4381. Batch: 108
  4382. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4383. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4384. Batch Loss: 0.9879856109619141
  4385. Batch: 109
  4386. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4387. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4388. Batch Loss: 0.33067646622657776
  4389. Batch: 110
  4390. Error
  4391. Batch: 111
  4392. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4393. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4394. Batch Loss: 0.30099430680274963
  4395. Batch: 112
  4396. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4397. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4398. Batch Loss: 1.0054309368133545
  4399. Batch: 113
  4400. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4401. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4402. Batch Loss: 0.57536780834198
  4403. Batch: 114
  4404. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4405. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4406. Batch Loss: 0.3576895594596863
  4407. Batch: 115
  4408. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4409. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4410. Batch Loss: 0.38454973697662354
  4411. Batch: 116
  4412. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4413. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4414. Batch Loss: 0.7640138864517212
  4415. Batch: 117
  4416. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4417. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4418. Batch Loss: 0.34275442361831665
  4419. Batch: 118
  4420. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4421. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4422. Batch Loss: 0.8335493206977844
  4423. Batch: 119
  4424. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4425. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4426. Batch Loss: 0.6442902088165283
  4427. Batch: 120
  4428. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4429. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4430. Batch Loss: 0.5538132786750793
  4431. Batch: 121
  4432. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4433. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4434. Batch Loss: 0.7761893272399902
  4435. Batch: 122
  4436. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4437. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4438. Batch Loss: 0.2884468734264374
  4439. Batch: 123
  4440. Error
  4441. Batch: 124
  4442. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4443. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4444. Batch Loss: 0.8021494746208191
  4445. Epoch 10/10
  4446. Batch: 0
  4447. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4448. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4449. Batch Loss: 0.9509953856468201
  4450. Batch: 1
  4451. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4452. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4453. Batch Loss: 0.5866695642471313
  4454. Batch: 2
  4455. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4456. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4457. Batch Loss: 0.1538478434085846
  4458. Batch: 3
  4459. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4460. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4461. Batch Loss: 0.9012120366096497
  4462. Batch: 4
  4463. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4464. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4465. Batch Loss: 1.0145281553268433
  4466. Batch: 5
  4467. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4468. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4469. Batch Loss: 0.645067036151886
  4470. Batch: 6
  4471. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4472. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4473. Batch Loss: 0.8653911352157593
  4474. Batch: 7
  4475. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4476. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4477. Batch Loss: 0.6538023352622986
  4478. Batch: 8
  4479. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4480. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4481. Batch Loss: 0.3744964301586151
  4482. Batch: 9
  4483. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4484. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4485. Batch Loss: 0.6026909351348877
  4486. Batch: 10
  4487. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4488. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4489. Batch Loss: 0.33316296339035034
  4490. Batch: 11
  4491. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4492. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4493. Batch Loss: 1.7307106256484985
  4494. Batch: 12
  4495. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4496. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4497. Batch Loss: 0.3924136757850647
  4498. Batch: 13
  4499. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4500. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4501. Batch Loss: 0.5690389275550842
  4502. Batch: 14
  4503. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4504. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4505. Batch Loss: 0.7717849016189575
  4506. Batch: 15
  4507. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4508. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4509. Batch Loss: 0.36538344621658325
  4510. Batch: 16
  4511. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4512. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4513. Batch Loss: 0.7048656940460205
  4514. Batch: 17
  4515. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4516. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4517. Batch Loss: 1.2498241662979126
  4518. Batch: 18
  4519. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4520. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4521. Batch Loss: 1.0953290462493896
  4522. Batch: 19
  4523. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4524. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4525. Batch Loss: 1.1385852098464966
  4526. Batch: 20
  4527. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4528. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4529. Batch Loss: 0.5488225817680359
  4530. Batch: 21
  4531. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4532. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4533. Batch Loss: 0.7305606007575989
  4534. Batch: 22
  4535. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4536. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4537. Batch Loss: 0.49614959955215454
  4538. Batch: 23
  4539. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4540. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4541. Batch Loss: 0.2955164611339569
  4542. Batch: 24
  4543. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4544. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4545. Batch Loss: 0.35532793402671814
  4546. Batch: 25
  4547. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4548. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4549. Batch Loss: 0.4326772689819336
  4550. Batch: 26
  4551. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4552. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4553. Batch Loss: 0.34012335538864136
  4554. Batch: 27
  4555. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4556. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4557. Batch Loss: 0.17718052864074707
  4558. Batch: 28
  4559. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4560. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4561. Batch Loss: 1.0080759525299072
  4562. Batch: 29
  4563. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4564. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4565. Batch Loss: 0.5191957354545593
  4566. Batch: 30
  4567. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4568. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4569. Batch Loss: 0.7552229166030884
  4570. Batch: 31
  4571. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4572. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4573. Batch Loss: 0.1573370099067688
  4574. Batch: 32
  4575. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4576. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4577. Batch Loss: 0.5424433946609497
  4578. Batch: 33
  4579. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4580. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4581. Batch Loss: 0.6434647440910339
  4582. Batch: 34
  4583. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4584. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4585. Batch Loss: 0.794025182723999
  4586. Batch: 35
  4587. Error
  4588. Batch: 36
  4589. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4590. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4591. Batch Loss: 0.42442917823791504
  4592. Batch: 37
  4593. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4594. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4595. Batch Loss: 0.16399729251861572
  4596. Batch: 38
  4597. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4598. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4599. Batch Loss: 0.16022813320159912
  4600. Batch: 39
  4601. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4602. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4603. Batch Loss: 0.6854473948478699
  4604. Batch: 40
  4605. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4606. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4607. Batch Loss: 0.549430787563324
  4608. Batch: 41
  4609. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4610. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4611. Batch Loss: 0.721182107925415
  4612. Batch: 42
  4613. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4614. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4615. Batch Loss: 0.6508143544197083
  4616. Batch: 43
  4617. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4618. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4619. Batch Loss: 0.6431180834770203
  4620. Batch: 44
  4621. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4622. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4623. Batch Loss: 0.5436357259750366
  4624. Batch: 45
  4625. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4626. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4627. Batch Loss: 0.13574649393558502
  4628. Batch: 46
  4629. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4630. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4631. Batch Loss: 0.6105443239212036
  4632. Batch: 47
  4633. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4634. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4635. Batch Loss: 0.3937390446662903
  4636. Batch: 48
  4637. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4638. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4639. Batch Loss: 1.249205231666565
  4640. Batch: 49
  4641. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4642. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4643. Batch Loss: 0.3288542628288269
  4644. Batch: 50
  4645. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4646. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4647. Batch Loss: 0.10987840592861176
  4648. Batch: 51
  4649. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4650. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4651. Batch Loss: 0.5768960118293762
  4652. Batch: 52
  4653. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4654. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4655. Batch Loss: 0.6470632553100586
  4656. Batch: 53
  4657. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4658. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4659. Batch Loss: 0.791163444519043
  4660. Batch: 54
  4661. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4662. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4663. Batch Loss: 0.6873786449432373
  4664. Batch: 55
  4665. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4666. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4667. Batch Loss: 0.39249488711357117
  4668. Batch: 56
  4669. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4670. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4671. Batch Loss: 1.1689293384552002
  4672. Batch: 57
  4673. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4674. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4675. Batch Loss: 0.23075592517852783
  4676. Batch: 58
  4677. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4678. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4679. Batch Loss: 0.674311637878418
  4680. Batch: 59
  4681. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4682. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4683. Batch Loss: 0.4369685649871826
  4684. Batch: 60
  4685. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4686. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4687. Batch Loss: 0.1774943768978119
  4688. Batch: 61
  4689. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4690. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4691. Batch Loss: 0.3230464458465576
  4692. Batch: 62
  4693. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4694. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4695. Batch Loss: 0.6264789700508118
  4696. Batch: 63
  4697. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4698. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4699. Batch Loss: 0.5480329990386963
  4700. Batch: 64
  4701. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4702. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4703. Batch Loss: 1.0427312850952148
  4704. Batch: 65
  4705. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4706. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4707. Batch Loss: 2.0749969482421875
  4708. Batch: 66
  4709. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4710. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4711. Batch Loss: 0.8190129995346069
  4712. Batch: 67
  4713. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4714. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4715. Batch Loss: 0.03328290954232216
  4716. Batch: 68
  4717. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4718. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4719. Batch Loss: 0.22295287251472473
  4720. Batch: 69
  4721. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4722. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4723. Batch Loss: 0.6557236909866333
  4724. Batch: 70
  4725. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4726. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4727. Batch Loss: 1.910079836845398
  4728. Batch: 71
  4729. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4730. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4731. Batch Loss: 0.7284246683120728
  4732. Batch: 72
  4733. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4734. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4735. Batch Loss: 0.2100384533405304
  4736. Batch: 73
  4737. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4738. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4739. Batch Loss: 0.8935866355895996
  4740. Batch: 74
  4741. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4742. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4743. Batch Loss: 0.6249580383300781
  4744. Batch: 75
  4745. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4746. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4747. Batch Loss: 0.44502538442611694
  4748. Batch: 76
  4749. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4750. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4751. Batch Loss: 0.16483111679553986
  4752. Batch: 77
  4753. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4754. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4755. Batch Loss: 0.46148842573165894
  4756. Batch: 78
  4757. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4758. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4759. Batch Loss: 0.40692687034606934
  4760. Batch: 79
  4761. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4762. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4763. Batch Loss: 0.7702367901802063
  4764. Batch: 80
  4765. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4766. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4767. Batch Loss: 1.863802433013916
  4768. Batch: 81
  4769. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4770. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4771. Batch Loss: 0.07866603881120682
  4772. Batch: 82
  4773. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4774. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4775. Batch Loss: 0.4715064764022827
  4776. Batch: 83
  4777. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4778. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4779. Batch Loss: 1.1315429210662842
  4780. Batch: 84
  4781. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4782. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4783. Batch Loss: 0.8527708649635315
  4784. Batch: 85
  4785. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4786. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4787. Batch Loss: 0.510165810585022
  4788. Batch: 86
  4789. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4790. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4791. Batch Loss: 1.8028428554534912
  4792. Batch: 87
  4793. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4794. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4795. Batch Loss: 1.1236215829849243
  4796. Batch: 88
  4797. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4798. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4799. Batch Loss: 0.0
  4800. Batch: 89
  4801. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4802. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4803. Batch Loss: 0.41957002878189087
  4804. Batch: 90
  4805. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4806. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4807. Batch Loss: 0.15766873955726624
  4808. Batch: 91
  4809. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4810. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4811. Batch Loss: 0.42363977432250977
  4812. Batch: 92
  4813. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4814. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4815. Batch Loss: 0.4467853009700775
  4816. Batch: 93
  4817. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4818. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4819. Batch Loss: 0.33041155338287354
  4820. Batch: 94
  4821. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4822. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4823. Batch Loss: 0.4355665147304535
  4824. Batch: 95
  4825. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4826. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4827. Batch Loss: 0.5356876254081726
  4828. Batch: 96
  4829. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4830. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4831. Batch Loss: 0.35537898540496826
  4832. Batch: 97
  4833. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4834. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4835. Batch Loss: 0.596323549747467
  4836. Batch: 98
  4837. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4838. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4839. Batch Loss: 0.6994932889938354
  4840. Batch: 99
  4841. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4842. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4843. Batch Loss: 0.4326479434967041
  4844. Batch: 100
  4845. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4846. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4847. Batch Loss: 0.20458360016345978
  4848. Batch: 101
  4849. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4850. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4851. Batch Loss: 0.6101669073104858
  4852. Batch: 102
  4853. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4854. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4855. Batch Loss: 0.6288650631904602
  4856. Batch: 103
  4857. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4858. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4859. Batch Loss: 1.0103554725646973
  4860. Batch: 104
  4861. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4862. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4863. Batch Loss: 0.5903040766716003
  4864. Batch: 105
  4865. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4866. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4867. Batch Loss: 1.2546981573104858
  4868. Batch: 106
  4869. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4870. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4871. Batch Loss: 0.64098060131073
  4872. Batch: 107
  4873. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4874. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4875. Batch Loss: 0.3146357834339142
  4876. Batch: 108
  4877. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4878. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4879. Batch Loss: 0.33075428009033203
  4880. Batch: 109
  4881. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4882. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4883. Batch Loss: 0.8458899259567261
  4884. Batch: 110
  4885. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4886. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4887. Batch Loss: 0.8351468443870544
  4888. Batch: 111
  4889. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4890. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4891. Batch Loss: 0.2884502410888672
  4892. Batch: 112
  4893. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4894. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4895. Batch Loss: 0.941017210483551
  4896. Batch: 113
  4897. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4898. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4899. Batch Loss: 0.5892589092254639
  4900. Batch: 114
  4901. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4902. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4903. Batch Loss: 0.4298489987850189
  4904. Batch: 115
  4905. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4906. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4907. Batch Loss: 0.1442013680934906
  4908. Batch: 116
  4909. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4910. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4911. Batch Loss: 0.6231182813644409
  4912. Batch: 117
  4913. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4914. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4915. Batch Loss: 0.4542675018310547
  4916. Batch: 118
  4917. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4918. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4919. Batch Loss: 0.5075332522392273
  4920. Batch: 119
  4921. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4922. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4923. Batch Loss: 0.7377285957336426
  4924. Batch: 120
  4925. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4926. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4927. Batch Loss: 2.034531354904175
  4928. Batch: 121
  4929. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4930. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4931. Batch Loss: 0.4120592474937439
  4932. Batch: 122
  4933. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4934. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4935. Batch Loss: 0.4326831102371216
  4936. Batch: 123
  4937. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4938. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4939. Batch Loss: 0.9930051565170288
  4940. Batch: 124
  4941. C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes\src\model\loss.py:87: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  4942. torch.tensor(sum(loss) / len(loss), requires_grad=True)
  4943. Batch Loss: 0.7418548464775085
  4944. ----------
  4945. Model trained
  4946. Model saved
  4947. PS C:\Users\sauqu\Documents\Purdue\Hackathon\mlp_new\HackathonF23-dotsandboxes>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...