Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test_preprocess.py 9.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
  1. """Pruebas unitarias para preprocess.py.
  2. Verifica funciones de carga, limpieza y transformación de datos.
  3. Dependencias:
  4. - pytest: Para ejecutar pruebas.
  5. - pandas: Para manipulación de datos.
  6. - unittest.mock: Para simular configuraciones y rutas.
  7. - pathlib: Para manejo de rutas.
  8. """
  9. import sys
  10. from pathlib import Path
  11. from unittest.mock import Mock, patch
  12. # Añadir el directorio raíz al sys.path
  13. ROOT_DIR = Path(__file__).parent.parent
  14. sys.path.insert(0, str(ROOT_DIR / "src"))
  15. import pytest
  16. import pandas as pd
  17. import numpy as np
  18. from src.preprocess import (
  19. get_data,
  20. rename_columns,
  21. strip_strings,
  22. handle_missing_values,
  23. filter_minimum_values,
  24. filter_by_age,
  25. filter_by_age_credit_ratio,
  26. drop_columns,
  27. encode_categorical,
  28. select_final_columns
  29. )
  30. @pytest.fixture
  31. def config():
  32. """Crea una configuración simulada para pruebas."""
  33. return Mock(
  34. raw=Mock(path="data/raw/credit_score_raw.csv"),
  35. process=Mock(
  36. translations={
  37. "Edad": "Age",
  38. "Salario_Mensual": "Monthly_Salary",
  39. "Puntaje_Credito": "Credit_Score"
  40. },
  41. cleaning=Mock(
  42. min_age=18,
  43. max_age_credit_ratio=2.0,
  44. drop_columns=["ID", "Nombre"]
  45. )
  46. )
  47. )
  48. def test_get_data(tmp_path, config):
  49. """Verifica que get_data carga un archivo CSV correctamente."""
  50. csv_path = tmp_path / "data" / "raw" / "credit_score_raw.csv"
  51. csv_path.parent.mkdir(parents=True, exist_ok=True)
  52. df_expected = pd.DataFrame({
  53. "Edad": [25, 30],
  54. "Salario_Mensual": [5000.0, 6000.0],
  55. "Puntaje_Credito": ["Good", "Standard"]
  56. })
  57. df_expected.to_csv(csv_path, index=False)
  58. with patch("src.preprocess.get_original_cwd", return_value=str(tmp_path)):
  59. df = get_data(config.raw.path)
  60. assert isinstance(df, pd.DataFrame)
  61. assert df.shape == (2, 3)
  62. assert list(df.columns) == ["Edad", "Salario_Mensual", "Puntaje_Credito"]
  63. pd.testing.assert_frame_equal(df, df_expected)
  64. def test_rename_columns(config):
  65. """Verifica que rename_columns renombra columnas según el diccionario de traducciones."""
  66. df_input = pd.DataFrame({
  67. "Edad": [25, 30],
  68. "Salario_Mensual": [5000.0, 6000.0],
  69. "Puntaje_Credito": ["Good", "Standard"],
  70. "Extra_Col": [1, 2]
  71. })
  72. translations = config.process.translations
  73. df_result = rename_columns(df_input, translations)
  74. assert isinstance(df_result, pd.DataFrame)
  75. assert df_result.shape == (2, 4)
  76. assert list(df_result.columns) == ["Age", "Monthly_Salary", "Credit_Score", "Extra_Col"]
  77. assert df_result["Age"].equals(df_input["Edad"])
  78. assert df_result["Monthly_Salary"].equals(df_input["Salario_Mensual"])
  79. assert df_result["Credit_Score"].equals(df_input["Puntaje_Credito"])
  80. assert df_result["Extra_Col"].equals(df_input["Extra_Col"])
  81. def test_strip_strings():
  82. """Verifica que strip_strings elimina espacios en blanco de columnas de tipo string."""
  83. df_input = pd.DataFrame({
  84. "Puntaje_Credito": [" Good ", "Standard "],
  85. "Edad": [25, 30],
  86. "Nombre": [" Juan ", " Maria "]
  87. })
  88. df_expected = pd.DataFrame({
  89. "Puntaje_Credito": ["Good", "Standard"],
  90. "Edad": [25, 30],
  91. "Nombre": ["Juan", "Maria"]
  92. })
  93. df_result = strip_strings(df_input)
  94. assert isinstance(df_result, pd.DataFrame)
  95. assert df_result.shape == (2, 3)
  96. assert list(df_result.columns) == ["Puntaje_Credito", "Edad", "Nombre"]
  97. pd.testing.assert_frame_equal(df_result, df_expected)
  98. def test_handle_missing_values():
  99. """Verifica que handle_missing_values imputa valores nulos correctamente."""
  100. df_input = pd.DataFrame({
  101. "Edad": [25, np.nan, 30],
  102. "Salario_Mensual": [5000.0, np.nan, 6000.0],
  103. "Puntaje_Credito": ["Good", np.nan, "Standard"]
  104. })
  105. df_expected = pd.DataFrame({
  106. "Edad": [25, 27.5, 30],
  107. "Salario_Mensual": [5000.0, 5500.0, 6000.0],
  108. "Puntaje_Credito": ["Good", "unknown", "Standard"]
  109. })
  110. df_result = handle_missing_values(df_input)
  111. assert isinstance(df_result, pd.DataFrame)
  112. assert df_result.shape == (3, 3)
  113. assert list(df_result.columns) == ["Edad", "Salario_Mensual", "Puntaje_Credito"]
  114. assert not df_result.isna().any().any()
  115. pd.testing.assert_frame_equal(df_result, df_expected)
  116. def test_filter_minimum_values():
  117. """Verifica que filter_minimum_values elimina filas con valores no positivos."""
  118. df_input = pd.DataFrame({
  119. "Num_Cuentas_Bancarias": [1, 0, 2],
  120. "Num_Prestamos": [2, 1, 0],
  121. "Edad": [25, 30, 35],
  122. "Puntaje_Credito": ["Good", "Standard", "Good"]
  123. })
  124. df_expected = pd.DataFrame({
  125. "Num_Cuentas_Bancarias": [1],
  126. "Num_Prestamos": [2],
  127. "Edad": [25],
  128. "Puntaje_Credito": ["Good"]
  129. })
  130. df_result = filter_minimum_values(df_input)
  131. assert isinstance(df_result, pd.DataFrame)
  132. assert df_result.shape == (1, 4)
  133. assert list(df_result.columns) == ["Num_Cuentas_Bancarias", "Num_Prestamos", "Edad", "Puntaje_Credito"]
  134. pd.testing.assert_frame_equal(df_result.reset_index(drop=True), df_expected.reset_index(drop=True))
  135. def test_filter_by_age(config):
  136. """Verifica que filter_by_age filtra filas con edad menor a la mínima."""
  137. df_input = pd.DataFrame({
  138. "Edad": [16, 18, 25],
  139. "Salario_Mensual": [3000.0, 5000.0, 6000.0],
  140. "Puntaje_Credito": ["Standard", "Good", "Good"]
  141. })
  142. df_expected = pd.DataFrame({
  143. "Edad": [18, 25],
  144. "Salario_Mensual": [5000.0, 6000.0],
  145. "Puntaje_Credito": ["Good", "Good"]
  146. })
  147. df_result = filter_by_age(df_input, config.process.cleaning.min_age)
  148. assert isinstance(df_result, pd.DataFrame)
  149. assert df_result.shape == (2, 3)
  150. assert list(df_result.columns) == ["Edad", "Salario_Mensual", "Puntaje_Credito"]
  151. pd.testing.assert_frame_equal(df_result.reset_index(drop=True), df_expected.reset_index(drop=True))
  152. def test_filter_by_age_credit_ratio(config):
  153. """Verifica que filter_by_age_credit_ratio filtra filas según la relación edad/historial crediticio."""
  154. df_input = pd.DataFrame({
  155. "Edad": [25, 30, 20],
  156. "Edad_Historial_Credito": [60, 12, 120],
  157. "Puntaje_Credito": ["Good", "Standard", "Good"]
  158. })
  159. df_expected = pd.DataFrame({
  160. "Edad": [20],
  161. "Edad_Historial_Credito": [120],
  162. "Puntaje_Credito": ["Good"]
  163. })
  164. df_result = filter_by_age_credit_ratio(df_input, config.process.cleaning.max_age_credit_ratio)
  165. assert isinstance(df_result, pd.DataFrame)
  166. assert df_result.shape == (1, 3)
  167. assert list(df_result.columns) == ["Edad", "Edad_Historial_Credito", "Puntaje_Credito"]
  168. assert "age_credit_ratio" not in df_result.columns
  169. pd.testing.assert_frame_equal(df_result.reset_index(drop=True), df_expected.reset_index(drop=True))
  170. def test_drop_columns(config):
  171. """Verifica que drop_columns elimina las columnas especificadas."""
  172. df_input = pd.DataFrame({
  173. "Edad": [25, 30],
  174. "ID": [1, 2],
  175. "Nombre": ["Juan", "Maria"],
  176. "Puntaje_Credito": ["Good", "Standard"]
  177. })
  178. df_expected = pd.DataFrame({
  179. "Edad": [25, 30],
  180. "Puntaje_Credito": ["Good", "Standard"]
  181. })
  182. df_result = drop_columns(df_input, config.process.cleaning.drop_columns)
  183. assert isinstance(df_result, pd.DataFrame)
  184. assert df_result.shape == (2, 2)
  185. assert list(df_result.columns) == ["Edad", "Puntaje_Credito"]
  186. pd.testing.assert_frame_equal(df_result.reset_index(drop=True), df_expected.reset_index(drop=True))
  187. def test_encode_categorical():
  188. """Verifica que encode_categorical codifica una columna categórica con OneHotEncoder."""
  189. df_input = pd.DataFrame({
  190. "Ocupacion": ["Ingeniero", "Profesor"],
  191. "Edad": [25, 30]
  192. })
  193. df_expected = pd.DataFrame({
  194. "Edad": [25, 30],
  195. "Ocupacion_Profesor": [0.0, 1.0]
  196. })
  197. df_result = encode_categorical(df_input, "Ocupacion", drop="first")
  198. assert isinstance(df_result, pd.DataFrame)
  199. assert df_result.shape == (2, 2)
  200. assert list(df_result.columns) == ["Edad", "Ocupacion_Profesor"]
  201. pd.testing.assert_frame_equal(df_result.reset_index(drop=True), df_expected.reset_index(drop=True))
  202. def test_select_final_columns():
  203. """Verifica que select_final_columns selecciona columnas numéricas, codificadas y el target."""
  204. df_input = pd.DataFrame({
  205. "Edad": [25, 30],
  206. "Salario_Mensual": [5000.0, 6000.0],
  207. "Puntaje_Credito": ["Good", "Standard"],
  208. "Ocupacion_Ingeniero": [1.0, 0.0],
  209. "Ocupacion_Profesor": [0.0, 1.0],
  210. "Nombre": ["Juan", "Maria"] # Columna no numérica ni codificada
  211. })
  212. df_expected = pd.DataFrame({
  213. "Edad": [25, 30],
  214. "Salario_Mensual": [5000.0, 6000.0],
  215. "Ocupacion_Ingeniero": [1.0, 0.0],
  216. "Ocupacion_Profesor": [0.0, 1.0],
  217. "Puntaje_Credito": ["Good", "Standard"]
  218. })
  219. df_result = select_final_columns(df_input, "Puntaje_Credito")
  220. assert isinstance(df_result, pd.DataFrame)
  221. assert df_result.shape == (2, 5)
  222. assert list(df_result.columns) == [
  223. "Edad",
  224. "Salario_Mensual",
  225. "Ocupacion_Ingeniero",
  226. "Ocupacion_Profesor",
  227. "Puntaje_Credito"
  228. ]
  229. pd.testing.assert_frame_equal(df_result.reset_index(drop=True), df_expected.reset_index(drop=True))
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...