Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

all_architectures.py 11 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  1. from super_gradients.training.models import ResNeXt50, ResNeXt101, googlenet_v1
  2. from super_gradients.training.models.classification_models import repvgg, efficientnet, densenet, resnet, regnet
  3. from super_gradients.training.models.classification_models.mobilenetv2 import mobile_net_v2, mobile_net_v2_135, \
  4. custom_mobile_net_v2
  5. from super_gradients.training.models.classification_models.mobilenetv3 import mobilenetv3_large, mobilenetv3_small, \
  6. mobilenetv3_custom
  7. from super_gradients.training.models.classification_models.shufflenetv2 import ShufflenetV2_x0_5, ShufflenetV2_x1_0, \
  8. ShufflenetV2_x1_5, \
  9. ShufflenetV2_x2_0, CustomizedShuffleNetV2
  10. from super_gradients.training.models.classification_models.vit import vit_base, vit_large, vit_huge
  11. from super_gradients.training.models.detection_models.csp_darknet53 import CSPDarknet53
  12. from super_gradients.training.models.detection_models.darknet53 import Darknet53
  13. from super_gradients.training.models.detection_models.ssd import SSDMobileNetV1, SSDLiteMobileNetV2
  14. from super_gradients.training.models.detection_models.yolox import YoloX_N, YoloX_T, YoloX_S, YoloX_M, YoloX_L, YoloX_X, CustomYoloX
  15. from super_gradients.training.models.segmentation_models.ddrnet import DDRNet23, DDRNet23Slim, AnyBackBoneDDRNet23
  16. from super_gradients.training.models.segmentation_models.regseg import RegSeg48
  17. from super_gradients.training.models.segmentation_models.shelfnet import ShelfNet18_LW, ShelfNet34_LW, ShelfNet50, \
  18. ShelfNet503343, ShelfNet101
  19. from super_gradients.training.models.segmentation_models.stdc import STDC1Classification, STDC2Classification, \
  20. STDC1Seg, STDC2Seg
  21. from super_gradients.training.models.kd_modules.kd_module import KDModule
  22. from super_gradients.training.models.classification_models.beit import beit_base_patch16_224, beit_large_patch16_224
  23. from super_gradients.training.models.segmentation_models.ppliteseg import PPLiteSegT, PPLiteSegB
  24. class ModelNames:
  25. """Static class to hold all the available model names"""""
  26. RESNET18 = "resnet18"
  27. RESNET34 = "resnet34"
  28. RESNET50_3343 = "resnet50_3343"
  29. RESNET50 = "resnet50"
  30. RESNET101 = "resnet101"
  31. RESNET152 = "resnet152"
  32. RESNET18_CIFAR = "resnet18_cifar"
  33. CUSTOM_RESNET = "custom_resnet"
  34. CUSTOM_RESNET50 = "custom_resnet50"
  35. CUSTOM_RESNET_CIFAR = "custom_resnet_cifar"
  36. CUSTOM_RESNET50_CIFAR = "custom_resnet50_cifar"
  37. MOBILENET_V2 = "mobilenet_v2"
  38. MOBILE_NET_V2_135 = "mobile_net_v2_135"
  39. CUSTOM_MOBILENET_V2 = "custom_mobilenet_v2"
  40. MOBILENET_V3_LARGE = "mobilenet_v3_large"
  41. MOBILENET_V3_SMALL = "mobilenet_v3_small"
  42. MOBILENET_V3_CUSTOM = "mobilenet_v3_custom"
  43. CUSTOM_DENSENET = "custom_densenet"
  44. DENSENET121 = "densenet121"
  45. DENSENET161 = "densenet161"
  46. DENSENET169 = "densenet169"
  47. DENSENET201 = "densenet201"
  48. SHELFNET18_LW = "shelfnet18_lw"
  49. SHELFNET34_LW = "shelfnet34_lw"
  50. SHELFNET50_3343 = "shelfnet50_3343"
  51. SHELFNET50 = "shelfnet50"
  52. SHELFNET101 = "shelfnet101"
  53. SHUFFLENET_V2_X0_5 = "shufflenet_v2_x0_5"
  54. SHUFFLENET_V2_X1_0 = "shufflenet_v2_x1_0"
  55. SHUFFLENET_V2_X1_5 = "shufflenet_v2_x1_5"
  56. SHUFFLENET_V2_X2_0 = "shufflenet_v2_x2_0"
  57. SHUFFLENET_V2_CUSTOM5 = "shufflenet_v2_custom5"
  58. DARKNET53 = "darknet53"
  59. CSP_DARKNET53 = "csp_darknet53"
  60. RESNEXT50 = "resnext50"
  61. RESNEXT101 = "resnext101"
  62. GOOGLENET_V1 = "googlenet_v1"
  63. EFFICIENTNET_B0 = "efficientnet_b0"
  64. EFFICIENTNET_B1 = "efficientnet_b1"
  65. EFFICIENTNET_B2 = "efficientnet_b2"
  66. EFFICIENTNET_B3 = "efficientnet_b3"
  67. EFFICIENTNET_B4 = "efficientnet_b4"
  68. EFFICIENTNET_B5 = "efficientnet_b5"
  69. EFFICIENTNET_B6 = "efficientnet_b6"
  70. EFFICIENTNET_B7 = "efficientnet_b7"
  71. EFFICIENTNET_B8 = "efficientnet_b8"
  72. EFFICIENTNET_L2 = "efficientnet_l2"
  73. CUSTOMIZEDEFFICIENTNET = "CustomizedEfficientnet"
  74. REGNETY200 = "regnetY200"
  75. REGNETY400 = "regnetY400"
  76. REGNETY600 = "regnetY600"
  77. REGNETY800 = "regnetY800"
  78. CUSTOM_REGNET = "custom_regnet"
  79. NAS_REGNET = "nas_regnet"
  80. YOLOX_N = "yolox_n"
  81. YOLOX_T = "yolox_t"
  82. YOLOX_S = "yolox_s"
  83. YOLOX_M = "yolox_m"
  84. YOLOX_L = "yolox_l"
  85. YOLOX_X = "yolox_x"
  86. CUSTOM_YOLO_X = "CustomYoloX"
  87. SSD_MOBILENET_V1 = "ssd_mobilenet_v1"
  88. SSD_LITE_MOBILENET_V2 = "ssd_lite_mobilenet_v2"
  89. REPVGG_A0 = "repvgg_a0"
  90. REPVGG_A1 = "repvgg_a1"
  91. REPVGG_A2 = "repvgg_a2"
  92. REPVGG_B0 = "repvgg_b0"
  93. REPVGG_B1 = "repvgg_b1"
  94. REPVGG_B2 = "repvgg_b2"
  95. REPVGG_B3 = "repvgg_b3"
  96. REPVGG_D2SE = "repvgg_d2se"
  97. REPVGG_CUSTOM = "repvgg_custom"
  98. DDRNET_23 = "ddrnet_23"
  99. DDRNET_23_SLIM = "ddrnet_23_slim"
  100. CUSTOM_DDRNET_23 = "custom_ddrnet_23"
  101. STDC1_CLASSIFICATION = "stdc1_classification"
  102. STDC2_CLASSIFICATION = "stdc2_classification"
  103. STDC1_SEG = "stdc1_seg"
  104. STDC1_SEG50 = "stdc1_seg50"
  105. STDC1_SEG75 = "stdc1_seg75"
  106. STDC2_SEG = "stdc2_seg"
  107. STDC2_SEG50 = "stdc2_seg50"
  108. STDC2_SEG75 = "stdc2_seg75"
  109. REGSEG48 = "regseg48"
  110. KD_MODULE = "kd_module"
  111. VIT_BASE = "vit_base"
  112. VIT_LARGE = "vit_large"
  113. VIT_HUGE = "vit_huge"
  114. BEIT_BASE_PATCH16_224 = "beit_base_patch16_224"
  115. BEIT_LARGE_PATCH16_224 = "beit_large_patch16_224"
  116. PP_LITE_T_SEG = "pp_lite_t_seg"
  117. PP_LITE_T_SEG50 = "pp_lite_t_seg50"
  118. PP_LITE_T_SEG75 = "pp_lite_t_seg75"
  119. PP_LITE_B_SEG = "pp_lite_b_seg"
  120. PP_LITE_B_SEG50 = "pp_lite_b_seg50"
  121. PP_LITE_B_SEG75 = "pp_lite_b_seg75"
  122. ARCHITECTURES = {ModelNames.RESNET18: resnet.ResNet18,
  123. ModelNames.RESNET34: resnet.ResNet34,
  124. ModelNames.RESNET50_3343: resnet.ResNet50_3343,
  125. ModelNames.RESNET50: resnet.ResNet50,
  126. ModelNames.RESNET101: resnet.ResNet101,
  127. ModelNames.RESNET152: resnet.ResNet152,
  128. ModelNames.RESNET18_CIFAR: resnet.ResNet18Cifar,
  129. ModelNames.CUSTOM_RESNET: resnet.CustomizedResnet,
  130. ModelNames.CUSTOM_RESNET50: resnet.CustomizedResnet50,
  131. ModelNames.CUSTOM_RESNET_CIFAR: resnet.CustomizedResnetCifar,
  132. ModelNames.CUSTOM_RESNET50_CIFAR: resnet.CustomizedResnet50Cifar,
  133. ModelNames.MOBILENET_V2: mobile_net_v2,
  134. ModelNames.MOBILE_NET_V2_135: mobile_net_v2_135,
  135. ModelNames.CUSTOM_MOBILENET_V2: custom_mobile_net_v2,
  136. ModelNames.MOBILENET_V3_LARGE: mobilenetv3_large,
  137. ModelNames.MOBILENET_V3_SMALL: mobilenetv3_small,
  138. ModelNames.MOBILENET_V3_CUSTOM: mobilenetv3_custom,
  139. ModelNames.CUSTOM_DENSENET: densenet.CustomizedDensnet,
  140. ModelNames.DENSENET121: densenet.densenet121,
  141. ModelNames.DENSENET161: densenet.densenet161,
  142. ModelNames.DENSENET169: densenet.densenet169,
  143. ModelNames.DENSENET201: densenet.densenet201,
  144. ModelNames.SHELFNET18_LW: ShelfNet18_LW,
  145. ModelNames.SHELFNET34_LW: ShelfNet34_LW,
  146. ModelNames.SHELFNET50_3343: ShelfNet503343,
  147. ModelNames.SHELFNET50: ShelfNet50,
  148. ModelNames.SHELFNET101: ShelfNet101,
  149. ModelNames.SHUFFLENET_V2_X0_5: ShufflenetV2_x0_5,
  150. ModelNames.SHUFFLENET_V2_X1_0: ShufflenetV2_x1_0,
  151. ModelNames.SHUFFLENET_V2_X1_5: ShufflenetV2_x1_5,
  152. ModelNames.SHUFFLENET_V2_X2_0: ShufflenetV2_x2_0,
  153. ModelNames.SHUFFLENET_V2_CUSTOM5: CustomizedShuffleNetV2,
  154. ModelNames.DARKNET53: Darknet53,
  155. ModelNames.CSP_DARKNET53: CSPDarknet53,
  156. ModelNames.RESNEXT50: ResNeXt50,
  157. ModelNames.RESNEXT101: ResNeXt101,
  158. ModelNames.GOOGLENET_V1: googlenet_v1,
  159. ModelNames.EFFICIENTNET_B0: efficientnet.b0,
  160. ModelNames.EFFICIENTNET_B1: efficientnet.b1,
  161. ModelNames.EFFICIENTNET_B2: efficientnet.b2,
  162. ModelNames.EFFICIENTNET_B3: efficientnet.b3,
  163. ModelNames.EFFICIENTNET_B4: efficientnet.b4,
  164. ModelNames.EFFICIENTNET_B5: efficientnet.b5,
  165. ModelNames.EFFICIENTNET_B6: efficientnet.b6,
  166. ModelNames.EFFICIENTNET_B7: efficientnet.b7,
  167. ModelNames.EFFICIENTNET_B8: efficientnet.b8,
  168. ModelNames.EFFICIENTNET_L2: efficientnet.l2,
  169. ModelNames.CUSTOMIZEDEFFICIENTNET: efficientnet.CustomizedEfficientnet,
  170. ModelNames.REGNETY200: regnet.RegNetY200,
  171. ModelNames.REGNETY400: regnet.RegNetY400,
  172. ModelNames.REGNETY600: regnet.RegNetY600,
  173. ModelNames.REGNETY800: regnet.RegNetY800,
  174. ModelNames.CUSTOM_REGNET: regnet.CustomRegNet,
  175. ModelNames.NAS_REGNET: regnet.NASRegNet,
  176. ModelNames.YOLOX_N: YoloX_N,
  177. ModelNames.YOLOX_T: YoloX_T,
  178. ModelNames.YOLOX_S: YoloX_S,
  179. ModelNames.YOLOX_M: YoloX_M,
  180. ModelNames.YOLOX_L: YoloX_L,
  181. ModelNames.YOLOX_X: YoloX_X,
  182. ModelNames.CUSTOM_YOLO_X: CustomYoloX,
  183. ModelNames.SSD_MOBILENET_V1: SSDMobileNetV1,
  184. ModelNames.SSD_LITE_MOBILENET_V2: SSDLiteMobileNetV2,
  185. ModelNames.REPVGG_A0: repvgg.RepVggA0,
  186. ModelNames.REPVGG_A1: repvgg.RepVggA1,
  187. ModelNames.REPVGG_A2: repvgg.RepVggA2,
  188. ModelNames.REPVGG_B0: repvgg.RepVggB0,
  189. ModelNames.REPVGG_B1: repvgg.RepVggB1,
  190. ModelNames.REPVGG_B2: repvgg.RepVggB2,
  191. ModelNames.REPVGG_B3: repvgg.RepVggB3,
  192. ModelNames.REPVGG_D2SE: repvgg.RepVggD2SE,
  193. ModelNames.REPVGG_CUSTOM: repvgg.RepVggCustom,
  194. ModelNames.DDRNET_23: DDRNet23,
  195. ModelNames.DDRNET_23_SLIM: DDRNet23Slim,
  196. ModelNames.CUSTOM_DDRNET_23: AnyBackBoneDDRNet23,
  197. ModelNames.STDC1_CLASSIFICATION: STDC1Classification,
  198. ModelNames.STDC2_CLASSIFICATION: STDC2Classification,
  199. ModelNames.STDC1_SEG: STDC1Seg,
  200. ModelNames.STDC1_SEG50: STDC1Seg,
  201. ModelNames.STDC1_SEG75: STDC1Seg,
  202. ModelNames.STDC2_SEG: STDC2Seg,
  203. ModelNames.STDC2_SEG50: STDC2Seg,
  204. ModelNames.STDC2_SEG75: STDC2Seg,
  205. ModelNames.REGSEG48: RegSeg48,
  206. ModelNames.KD_MODULE: KDModule,
  207. ModelNames.VIT_BASE: vit_base,
  208. ModelNames.VIT_LARGE: vit_large,
  209. ModelNames.VIT_HUGE: vit_huge,
  210. ModelNames.BEIT_BASE_PATCH16_224: beit_base_patch16_224,
  211. ModelNames.BEIT_LARGE_PATCH16_224: beit_large_patch16_224,
  212. ModelNames.PP_LITE_T_SEG: PPLiteSegT,
  213. ModelNames.PP_LITE_T_SEG50: PPLiteSegT,
  214. ModelNames.PP_LITE_T_SEG75: PPLiteSegT,
  215. ModelNames.PP_LITE_B_SEG: PPLiteSegB,
  216. ModelNames.PP_LITE_B_SEG50: PPLiteSegB,
  217. ModelNames.PP_LITE_B_SEG75: PPLiteSegB,
  218. }
  219. KD_ARCHITECTURES = {
  220. ModelNames.KD_MODULE: KDModule
  221. }
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...