Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train_with_precise_bn_test.py 2.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  1. import unittest
  2. from super_gradients import Trainer
  3. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  4. from super_gradients.training.metrics import Accuracy, Top5
  5. from super_gradients.training.models import ResNet18
  6. class TrainWithPreciseBNTest(unittest.TestCase):
  7. """
  8. Unit test for training with precise_bn.
  9. """
  10. def test_train_with_precise_bn_explicit_size(self):
  11. trainer = Trainer("test_train_with_precise_bn_explicit_size")
  12. net = ResNet18(num_classes=5, arch_params={})
  13. train_params = {
  14. "max_epochs": 2,
  15. "lr_updates": [1],
  16. "lr_decay_factor": 0.1,
  17. "lr_mode": "step",
  18. "lr_warmup_epochs": 0,
  19. "initial_lr": 0.1,
  20. "loss": "cross_entropy",
  21. "optimizer": "SGD",
  22. "criterion_params": {},
  23. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  24. "train_metrics_list": [Accuracy(), Top5()],
  25. "valid_metrics_list": [Accuracy(), Top5()],
  26. "metric_to_watch": "Accuracy",
  27. "greater_metric_to_watch_is_better": True,
  28. "precise_bn": True,
  29. "precise_bn_batch_size": 100,
  30. }
  31. trainer.train(
  32. model=net,
  33. training_params=train_params,
  34. train_loader=classification_test_dataloader(batch_size=10),
  35. valid_loader=classification_test_dataloader(batch_size=10),
  36. )
  37. def test_train_with_precise_bn_implicit_size(self):
  38. trainer = Trainer("test_train_with_precise_bn_implicit_size")
  39. net = ResNet18(num_classes=5, arch_params={})
  40. train_params = {
  41. "max_epochs": 2,
  42. "lr_updates": [1],
  43. "lr_decay_factor": 0.1,
  44. "lr_mode": "step",
  45. "lr_warmup_epochs": 0,
  46. "initial_lr": 0.1,
  47. "loss": "cross_entropy",
  48. "optimizer": "SGD",
  49. "criterion_params": {},
  50. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  51. "train_metrics_list": [Accuracy(), Top5()],
  52. "valid_metrics_list": [Accuracy(), Top5()],
  53. "metric_to_watch": "Accuracy",
  54. "greater_metric_to_watch_is_better": True,
  55. "precise_bn": True,
  56. }
  57. trainer.train(
  58. model=net,
  59. training_params=train_params,
  60. train_loader=classification_test_dataloader(batch_size=10),
  61. valid_loader=classification_test_dataloader(batch_size=10),
  62. )
  63. if __name__ == "__main__":
  64. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...