1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
- import numpy as np
- import unittest
- from super_gradients.training.transforms.transforms import DetectionTargetsFormatTransform
- from super_gradients.training.datasets.data_formats.default_formats import (
- XYXY_LABEL,
- LABEL_XYXY,
- LABEL_CXCYWH,
- LABEL_NORMALIZED_XYXY,
- LABEL_NORMALIZED_CXCYWH,
- )
- class DetectionTargetsTransformTest(unittest.TestCase):
- def setUp(self) -> None:
- self.image = np.zeros((3, 100, 200))
- def test_label_first_2_label_last(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- output = np.array([[50, 10, 20, 30, 40]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(input_dim=self.image.shape[1:], max_targets=1, input_format=XYXY_LABEL, output_format=LABEL_XYXY)
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_xyxy_2_normalized_xyxy(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- _, h, w = self.image.shape
- output = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_XYXY, output_format=LABEL_NORMALIZED_XYXY)
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_xyxy_2_cxcywh(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- _, h, w = self.image.shape
- output = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_XYXY, output_format=LABEL_CXCYWH)
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_xyxy_2_normalized_cxcywh(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- _, h, w = self.image.shape
- output = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(
- input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_XYXY, output_format=LABEL_NORMALIZED_CXCYWH
- )
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_normalized_xyxy_2_cxcywh(self):
- _, h, w = self.image.shape
- input = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- output = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(
- input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_NORMALIZED_XYXY, output_format=LABEL_CXCYWH
- )
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_normalized_xyxy_2_normalized_cxcywh(self):
- _, h, w = self.image.shape
- input = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- output = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(
- input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_NORMALIZED_XYXY, output_format=LABEL_NORMALIZED_CXCYWH
- )
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_cxcywh_2_xyxy(self):
- output = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- input = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_CXCYWH, output_format=LABEL_XYXY)
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_cxcywh_2_normalized_xyxy(self):
- _, h, w = self.image.shape
- output = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- input = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(
- input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_CXCYWH, output_format=LABEL_NORMALIZED_XYXY
- )
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_normalized_cxcywh_2_xyxy(self):
- _, h, w = self.image.shape
- input = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- output = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(
- input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_NORMALIZED_CXCYWH, output_format=LABEL_XYXY
- )
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- def test_normalized_cxcywh_2_normalized_xyxy(self):
- _, h, w = self.image.shape
- output = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- input = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- sample = {"image": self.image, "target": input}
- transform = DetectionTargetsFormatTransform(
- input_dim=self.image.shape[1:], max_targets=1, input_format=LABEL_NORMALIZED_CXCYWH, output_format=LABEL_NORMALIZED_XYXY
- )
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output, atol=1e-6))
- if __name__ == "__main__":
- unittest.main()
|