1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
- import unittest
- from super_gradients.training import SgModel
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.datasets import ClassificationTestDatasetInterface
- from super_gradients.training.models import LeNet
- from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
- class TestLRCallback(PhaseCallback):
- """
- Phase callback that collects the learning rates in lr_placeholder at the end of each epoch (used for testing). In
- the case of multiple parameter groups (i.e multiple learning rates) the learning rate is collected from the first
- one. The phase is VALIDATION_EPOCH_END to ensure all lr updates have been performed before calling this callback.
- """
- def __init__(self, lr_placeholder):
- super(TestLRCallback, self).__init__(Phase.VALIDATION_EPOCH_END)
- self.lr_placeholder = lr_placeholder
- def __call__(self, context: PhaseContext):
- self.lr_placeholder.append(context.optimizer.param_groups[0]['lr'])
- class LRWarmupTest(unittest.TestCase):
- def setUp(self) -> None:
- self.dataset_params = {"batch_size": 4}
- self.dataset = ClassificationTestDatasetInterface(dataset_params=self.dataset_params)
- self.arch_params = {'num_classes': 10}
- def test_lr_warmup(self):
- # Define Model
- net = LeNet()
- model = SgModel("lr_warmup_test", model_checkpoints_location='local')
- model.connect_dataset_interface(self.dataset)
- model.build_model(net, arch_params=self.arch_params)
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 5, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 3, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks}
- expected_lrs = [0.25, 0.5, 0.75, 1.0, 1.0]
- model.train(train_params)
- self.assertListEqual(lrs, expected_lrs)
- def test_lr_warmup_with_lr_scheduling(self):
- # Define Model
- net = LeNet()
- model = SgModel("lr_warmup_test", model_checkpoints_location='local')
- model.connect_dataset_interface(self.dataset)
- model.build_model(net, arch_params=self.arch_params)
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 5, "cosine_final_lr_ratio": 0.2, "lr_mode": "cosine",
- "lr_warmup_epochs": 3, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks}
- expected_lrs = [0.25, 0.5, 0.75, 0.9236067977499791, 0.4763932022500211]
- model.train(train_params)
- # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
- # THE LRS AFTER THE UPDATE
- self.assertListEqual(lrs, expected_lrs)
- if __name__ == '__main__':
- unittest.main()
|