Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

pretrained_models_test.py 3.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  1. import unittest
  2. import super_gradients
  3. from super_gradients.training import MultiGPUMode
  4. from super_gradients.training import SgModel
  5. from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ImageNetDatasetInterface
  6. from super_gradients.training.metrics import Accuracy
  7. import os
  8. import shutil
  9. class PretrainedModelsTest(unittest.TestCase):
  10. def setUp(self) -> None:
  11. super_gradients.init_trainer()
  12. self.imagenet_pretrained_models = ["resnet50", "repvgg_a0", "regnetY800"]
  13. self.imagenet_pretrained_arch_params = {"resnet50": {"pretrained_weights": "imagenet"},
  14. "regnetY800": {"pretrained_weights": "imagenet"},
  15. "repvgg_a0": {"pretrained_weights": "imagenet",
  16. "build_residual_branches": True}}
  17. self.imagenet_pretrained_accuracies = {"resnet50": 0.763,
  18. "repvgg_a0": 0.7205,
  19. "regnetY800": 0.7605}
  20. self.imagenet_dataset = ImageNetDatasetInterface(data_dir="/data/Imagenet", dataset_params={"batch_size": 128})
  21. def test_pretrained_resnet50_imagenet(self):
  22. trainer = SgModel('imagenet_pretrained_resnet50', model_checkpoints_location='local',
  23. multi_gpu=MultiGPUMode.OFF)
  24. trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
  25. trainer.build_model("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet50"])
  26. res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
  27. metrics_progress_verbose=True)[0].cpu().item()
  28. self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet50"])
  29. def test_pretrained_regnetY800_imagenet(self):
  30. trainer = SgModel('imagenet_pretrained_regnetY800', model_checkpoints_location='local',
  31. multi_gpu=MultiGPUMode.OFF)
  32. trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
  33. trainer.build_model("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnetY800"])
  34. res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
  35. metrics_progress_verbose=True)[0].cpu().item()
  36. self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet50"])
  37. def test_pretrained_repvgg_a0_imagenet(self):
  38. trainer = SgModel('imagenet_pretrained_repvgg_a0', model_checkpoints_location='local',
  39. multi_gpu=MultiGPUMode.OFF)
  40. trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
  41. trainer.build_model("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"])
  42. res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
  43. metrics_progress_verbose=True)[0].cpu().item()
  44. self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet50"])
  45. def tearDown(self) -> None:
  46. if os.path.exists('~/.cache/torch/hub/'):
  47. shutil.rmtree('~/.cache/torch/hub/')
  48. if __name__ == '__main__':
  49. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...