Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

external_dataset_e2e.py 5.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
  1. import super_gradients
  2. import torch
  3. import unittest
  4. import numpy as np
  5. from PIL import Image
  6. import tensorflow.keras as keras
  7. from super_gradients.training import MultiGPUMode
  8. from super_gradients.training import SgModel
  9. from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ExternalDatasetInterface, \
  10. ImageNetDatasetInterface
  11. from super_gradients.training.metrics import Accuracy, Top5
  12. class DataGenerator(keras.utils.Sequence):
  13. def __init__(self, samples, batch_size=1, dims=(320, 320), n_channels=3,
  14. n_classes=1000, shuffle=True):
  15. self.dims = dims
  16. self.batch_size = batch_size
  17. self.samples = samples
  18. self.n_channels = n_channels
  19. self.n_classes = n_classes
  20. self.shuffle = shuffle
  21. self.on_epoch_end()
  22. def __len__(self):
  23. # Fraction of dataset to be used - for faster testing
  24. fraction_of_dataset = 0.01
  25. return int(np.floor(len(self.samples) / self.batch_size) * fraction_of_dataset)
  26. def __getitem__(self, index):
  27. indices = self.indices[index * self.batch_size:(index + 1) * self.batch_size]
  28. list_IDs_temp = [self.samples[k] for k in indices]
  29. X, y = self.__data_generation(list_IDs_temp)
  30. return X, y
  31. def on_epoch_end(self):
  32. self.indices = np.arange(len(self.samples))
  33. if self.shuffle:
  34. np.random.shuffle(self.indices)
  35. def __data_generation(self, list_IDs_temp):
  36. X = np.empty((self.batch_size, *self.dims, self.n_channels), dtype=np.float32)
  37. y = np.empty((self.batch_size), dtype=int)
  38. for i, ID in enumerate(list_IDs_temp):
  39. image = Image.open(ID[0])
  40. image = image.resize((self.dims))
  41. rgb_image = Image.new("RGB", image.size)
  42. rgb_image.paste(image)
  43. X[i, ] = np.array(rgb_image)
  44. y[i] = ID[1]
  45. return X, keras.utils.to_categorical(y, num_classes=self.n_classes)
  46. def create_imagenet_dataset():
  47. dataset_params = {"batch_size": 1}
  48. dataset = ImageNetDatasetInterface(data_dir="/data/Imagenet", dataset_params=dataset_params)
  49. return dataset
  50. class TransposeCollateFn(object):
  51. def __init__(self, new_shape):
  52. self.new_shape = new_shape
  53. def __call__(self, batch):
  54. new_inputs = []
  55. new_targets = []
  56. for img in batch:
  57. squeezed_input = img[0].squeeze(axis=0)
  58. transposed_data = np.transpose(squeezed_input, self.new_shape)
  59. new_inputs.append(torch.from_numpy(transposed_data))
  60. argmax_target = np.argmax(img[1], 1)
  61. new_targets.append(torch.from_numpy(argmax_target))
  62. return torch.stack(new_inputs, 0), torch.cat(new_targets, 0)
  63. class TestExternalDatasetInterface(unittest.TestCase):
  64. def setUp(self):
  65. super_gradients.init_trainer()
  66. dataset = create_imagenet_dataset()
  67. data_samples_train = dataset.trainset.samples
  68. data_samples_val = dataset.valset.samples
  69. # batch size: 1 is only for the creation of the external keras loader
  70. self.keras_params = {'dims': (256, 256),
  71. 'batch_size': 1,
  72. 'n_classes': 1000,
  73. 'n_channels': 3,
  74. 'shuffle': True}
  75. training_generator = DataGenerator(data_samples_train, **self.keras_params)
  76. testing_generator = DataGenerator(data_samples_val, **self.keras_params)
  77. external_num_classes = 1000
  78. collate_fn = TransposeCollateFn((2, 0, 1))
  79. self.external_dataset_params = {'batch_size': 16,
  80. 'test_batch_size': 16,
  81. 'train_collate_fn': collate_fn,
  82. 'val_collate_fn': collate_fn}
  83. self.test_external_dataset_interface = ExternalDatasetInterface(train_loader=training_generator,
  84. val_loader=testing_generator,
  85. num_classes=external_num_classes,
  86. dataset_params=self.external_dataset_params)
  87. def test_transpose_collate_fn(self):
  88. collate_fn = TransposeCollateFn((2, 0, 1))
  89. dims = self.keras_params['dims']
  90. n_channels = self.keras_params['n_channels']
  91. batch_size = self.external_dataset_params['batch_size']
  92. dummy_batch = []
  93. dummy_input = np.expand_dims(np.random.rand(dims[0], dims[1], n_channels), axis=0)
  94. dummy_target = np.expand_dims(np.random.rand(1), axis=0)
  95. for i in range(batch_size):
  96. dummy_batch.append((dummy_input, dummy_target))
  97. collate_fn_output = collate_fn.__call__(dummy_batch)
  98. dummy_tensor = torch.rand(batch_size, n_channels, dims[0], dims[1])
  99. self.assertEqual(dummy_tensor.shape, collate_fn_output[0].shape)
  100. def test_model_train(self):
  101. train_params = {"max_epochs": 2, "lr_decay_factor": 0.1, "initial_lr": 0.025,
  102. "loss": "cross_entropy",
  103. "train_metrics_list": [Accuracy(), Top5()],
  104. "valid_metrics_list": [Accuracy(), Top5()],
  105. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  106. "greater_metric_to_watch_is_better": True}
  107. arch_params = {'num_classes': 1000}
  108. model = SgModel("test", model_checkpoints_location='local',
  109. multi_gpu=MultiGPUMode.OFF)
  110. model.connect_dataset_interface(dataset_interface=self.test_external_dataset_interface,
  111. data_loader_num_workers=8)
  112. model.build_model("resnet50", arch_params, load_checkpoint=False)
  113. model.train(training_params=train_params)
  114. if __name__ == '__main__':
  115. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...