1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
- import super_gradients
- import torch
- import unittest
- import numpy as np
- from PIL import Image
- import tensorflow.keras as keras
- from super_gradients.training import MultiGPUMode
- from super_gradients.training import SgModel
- from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ExternalDatasetInterface, \
- ImageNetDatasetInterface
- from super_gradients.training.metrics import Accuracy, Top5
- class DataGenerator(keras.utils.Sequence):
- def __init__(self, samples, batch_size=1, dims=(320, 320), n_channels=3,
- n_classes=1000, shuffle=True):
- self.dims = dims
- self.batch_size = batch_size
- self.samples = samples
- self.n_channels = n_channels
- self.n_classes = n_classes
- self.shuffle = shuffle
- self.on_epoch_end()
- def __len__(self):
- # Fraction of dataset to be used - for faster testing
- fraction_of_dataset = 0.01
- return int(np.floor(len(self.samples) / self.batch_size) * fraction_of_dataset)
- def __getitem__(self, index):
- indices = self.indices[index * self.batch_size:(index + 1) * self.batch_size]
- list_IDs_temp = [self.samples[k] for k in indices]
- X, y = self.__data_generation(list_IDs_temp)
- return X, y
- def on_epoch_end(self):
- self.indices = np.arange(len(self.samples))
- if self.shuffle:
- np.random.shuffle(self.indices)
- def __data_generation(self, list_IDs_temp):
- X = np.empty((self.batch_size, *self.dims, self.n_channels), dtype=np.float32)
- y = np.empty((self.batch_size), dtype=int)
- for i, ID in enumerate(list_IDs_temp):
- image = Image.open(ID[0])
- image = image.resize((self.dims))
- rgb_image = Image.new("RGB", image.size)
- rgb_image.paste(image)
- X[i, ] = np.array(rgb_image)
- y[i] = ID[1]
- return X, keras.utils.to_categorical(y, num_classes=self.n_classes)
- def create_imagenet_dataset():
- dataset_params = {"batch_size": 1}
- dataset = ImageNetDatasetInterface(data_dir="/data/Imagenet", dataset_params=dataset_params)
- return dataset
- class TransposeCollateFn(object):
- def __init__(self, new_shape):
- self.new_shape = new_shape
- def __call__(self, batch):
- new_inputs = []
- new_targets = []
- for img in batch:
- squeezed_input = img[0].squeeze(axis=0)
- transposed_data = np.transpose(squeezed_input, self.new_shape)
- new_inputs.append(torch.from_numpy(transposed_data))
- argmax_target = np.argmax(img[1], 1)
- new_targets.append(torch.from_numpy(argmax_target))
- return torch.stack(new_inputs, 0), torch.cat(new_targets, 0)
- class TestExternalDatasetInterface(unittest.TestCase):
- def setUp(self):
- super_gradients.init_trainer()
- dataset = create_imagenet_dataset()
- data_samples_train = dataset.trainset.samples
- data_samples_val = dataset.valset.samples
- # batch size: 1 is only for the creation of the external keras loader
- self.keras_params = {'dims': (256, 256),
- 'batch_size': 1,
- 'n_classes': 1000,
- 'n_channels': 3,
- 'shuffle': True}
- training_generator = DataGenerator(data_samples_train, **self.keras_params)
- testing_generator = DataGenerator(data_samples_val, **self.keras_params)
- external_num_classes = 1000
- collate_fn = TransposeCollateFn((2, 0, 1))
- self.external_dataset_params = {'batch_size': 16,
- 'test_batch_size': 16,
- 'train_collate_fn': collate_fn,
- 'val_collate_fn': collate_fn}
- self.test_external_dataset_interface = ExternalDatasetInterface(train_loader=training_generator,
- val_loader=testing_generator,
- num_classes=external_num_classes,
- dataset_params=self.external_dataset_params)
- def test_transpose_collate_fn(self):
- collate_fn = TransposeCollateFn((2, 0, 1))
- dims = self.keras_params['dims']
- n_channels = self.keras_params['n_channels']
- batch_size = self.external_dataset_params['batch_size']
- dummy_batch = []
- dummy_input = np.expand_dims(np.random.rand(dims[0], dims[1], n_channels), axis=0)
- dummy_target = np.expand_dims(np.random.rand(1), axis=0)
- for i in range(batch_size):
- dummy_batch.append((dummy_input, dummy_target))
- collate_fn_output = collate_fn.__call__(dummy_batch)
- dummy_tensor = torch.rand(batch_size, n_channels, dims[0], dims[1])
- self.assertEqual(dummy_tensor.shape, collate_fn_output[0].shape)
- def test_model_train(self):
- train_params = {"max_epochs": 2, "lr_decay_factor": 0.1, "initial_lr": 0.025,
- "loss": "cross_entropy",
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- arch_params = {'num_classes': 1000}
- model = SgModel("test", model_checkpoints_location='local',
- multi_gpu=MultiGPUMode.OFF)
- model.connect_dataset_interface(dataset_interface=self.test_external_dataset_interface,
- data_loader_num_workers=8)
- model.build_model("resnet50", arch_params, load_checkpoint=False)
- model.train(training_params=train_params)
- if __name__ == '__main__':
- unittest.main()
|