Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

imagenet_regnetY800.yaml 1.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
  1. # RegnetY800 Imagenet classification training:
  2. # This example trains with batch_size = 128
  3. # Training time on a single GeForce RTX 2080 Ti is ~ 44min / epoch, total time ~ 2d 22h 50m.
  4. # Reach => 76.05 (Final averaged model)
  5. # Log and tensorboard at s3://deci-pretrained-models/regnetY800-imagenet-tensorboard/
  6. # Instructions:
  7. # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  8. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
  9. # Then:
  10. # python train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY800
  11. defaults:
  12. - training_hyperparams: imagenet_regnetY800_train_params
  13. - dataset_params: imagenet_dataset_params
  14. - arch_params: regnetY_arch_params
  15. dataset_params:
  16. batch_size: 128
  17. dataset_interface:
  18. _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.ImageNetDatasetInterface
  19. dataset_params: ${dataset_params}
  20. data_dir: /data/Imagenet
  21. data_loader_num_workers: 8
  22. model_checkpoints_location: local
  23. load_checkpoint: False
  24. experiment_name: regnetY800_imagenet
  25. multi_gpu:
  26. _target_: super_gradients.training.sg_model.MultiGPUMode
  27. value: 'Off'
  28. deci_model:
  29. _target_: super_gradients.SgModel
  30. experiment_name: ${experiment_name}
  31. multi_gpu: ${multi_gpu}
  32. architecture: regnetY800
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...