Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

cifar10_resnet.yaml 1.0 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  1. # Cifar10 Classification Training:
  2. # Reaches ~94.9 Accuracy after 250 Epochs
  3. # Instructions:
  4. # running from the command line, set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  5. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
  6. # Then:
  7. # python train_from_recipe_example/train_from_recipe.py --config-name=cifar10_resnet
  8. defaults:
  9. - training_hyperparams: cifar10_resnet_train_params
  10. - dataset_params: cifar10_dataset_params
  11. - arch_params: resnet18_cifar_arch_params
  12. dataset_interface:
  13. _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.Cifar10DatasetInterface
  14. dataset_params: ${dataset_params}
  15. data_loader_num_workers: 8
  16. load_checkpoint: False
  17. experiment_name: Cifar10_Resnet18_Example
  18. multi_gpu:
  19. _target_: super_gradients.training.sg_model.MultiGPUMode
  20. value: 'Off'
  21. deci_model:
  22. _target_: super_gradients.SgModel
  23. experiment_name: ${experiment_name}
  24. multi_gpu: ${multi_gpu}
  25. architecture: resnet18_cifar
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...