Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

ddrnet_classification_example.py 3.0 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  1. """
  2. TODO: REFACTOR AS YAML FILES RECIPE
  3. Train DDRNet23 backbone in ImageNet according to the paper
  4. Training backbone on imagenet:
  5. python -m torch.distributed.launch --nproc_per_node=4 ddrnet_segmentation_example.py [-s for slim]
  6. [-d $n for decinet_$n backbone] --train_imagenet
  7. Official git repo: https://github.com/ydhongHIT/DDRNet
  8. Paper: https://arxiv.org/pdf/2101.06085.pdf
  9. """
  10. import torch
  11. from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ImageNetDatasetInterface
  12. import super_gradients
  13. from super_gradients.training import SgModel, MultiGPUMode
  14. from super_gradients.training.models import HpmStruct
  15. import argparse
  16. from super_gradients.training.metrics import Accuracy, Top5
  17. parser = argparse.ArgumentParser()
  18. super_gradients.init_trainer()
  19. parser.add_argument("--reload", action="store_true")
  20. parser.add_argument("--max_epochs", type=int, default=100)
  21. parser.add_argument("--batch", type=int, default=3)
  22. parser.add_argument("--experiment_name", type=str, default="ddrnet_23")
  23. parser.add_argument("-s", "--slim", action="store_true", help='train the slim version of DDRNet23')
  24. args, _ = parser.parse_known_args()
  25. distributed = super_gradients.is_distributed()
  26. devices = torch.cuda.device_count() if not distributed else 1
  27. train_params_ddr = {"max_epochs": args.max_epochs,
  28. "lr_mode": "step",
  29. "lr_updates": [30, 60, 90],
  30. "lr_decay_factor": 0.1,
  31. "initial_lr": 0.1 * devices,
  32. "optimizer": "SGD",
  33. "optimizer_params": {"weight_decay": 0.0001, "momentum": 0.9, "nesterov": True},
  34. "loss": "cross_entropy",
  35. "train_metrics_list": [Accuracy(), Top5()],
  36. "valid_metrics_list": [Accuracy(), Top5()],
  37. "loss_logging_items_names": ["Loss"],
  38. "metric_to_watch": "Accuracy",
  39. "greater_metric_to_watch_is_better": True
  40. }
  41. dataset_params = {"batch_size": args.batch,
  42. "color_jitter": 0.4,
  43. "random_erase_prob": 0.2,
  44. "random_erase_value": 'random',
  45. "train_interpolation": 'random',
  46. "auto_augment_config_string": 'rand-m9-mstd0.5'
  47. }
  48. model = SgModel(experiment_name=args.experiment_name,
  49. multi_gpu=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL if distributed else MultiGPUMode.DATA_PARALLEL,
  50. device='cuda')
  51. dataset = ImageNetDatasetInterface(dataset_params=dataset_params)
  52. model.connect_dataset_interface(dataset, data_loader_num_workers=8 * devices)
  53. arch_params = HpmStruct(**{"num_classes": 1000, "aux_head": False, "classification_mode": True, 'dropout_prob': 0.3})
  54. model.build_model(architecture="ddrnet_23_slim" if args.slim else "ddrnet_23",
  55. arch_params=arch_params,
  56. load_checkpoint=args.reload)
  57. model.train(training_params=train_params_ddr)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...