1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.models.repvgg — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Contents:</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html">Introduction</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">super_gradients.training package</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.models.repvgg</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.models.repvgg</h1><div class="highlight"><pre>
- <span></span><span class="sd">'''</span>
- <span class="sd">Repvgg Pytorch Implementation. This model trains a vgg with residual blocks</span>
- <span class="sd">but during inference (in deployment mode) will convert the model to vgg model.</span>
- <span class="sd">Pretrained models: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq</span>
- <span class="sd">Refrerences:</span>
- <span class="sd"> [1] https://github.com/DingXiaoH/RepVGG</span>
- <span class="sd"> [2] https://arxiv.org/pdf/2101.03697.pdf</span>
- <span class="sd">Based on https://github.com/DingXiaoH/RepVGG</span>
- <span class="sd">'''</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Union</span>
- <span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">import</span> <span class="nn">torch.nn.parallel</span>
- <span class="kn">import</span> <span class="nn">torch.optim</span>
- <span class="kn">import</span> <span class="nn">torch.utils.data</span>
- <span class="kn">import</span> <span class="nn">torch.utils.data.distributed</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.models</span> <span class="kn">import</span> <span class="n">SgModule</span>
- <span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.module_utils</span> <span class="kn">import</span> <span class="n">fuse_repvgg_blocks_residual_branches</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.utils</span> <span class="kn">import</span> <span class="n">get_param</span>
- <div class="viewcode-block" id="SEBlock"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.SEBlock">[docs]</a><span class="k">class</span> <span class="nc">SEBlock</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_channels</span><span class="p">,</span> <span class="n">internal_neurons</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">SEBlock</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">down</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">input_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">internal_neurons</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">up</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">internal_neurons</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">input_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">input_channels</span> <span class="o">=</span> <span class="n">input_channels</span>
- <div class="viewcode-block" id="SEBlock.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.SEBlock.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">avg_pool2d</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">inputs</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span>
- <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">down</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">up</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_channels</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">inputs</span> <span class="o">*</span> <span class="n">x</span></div></div>
- <div class="viewcode-block" id="conv_bn"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.conv_bn">[docs]</a><span class="k">def</span> <span class="nf">conv_bn</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">dilation</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
- <span class="n">result</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">()</span>
- <span class="n">result</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'conv'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">out_channels</span><span class="p">,</span>
- <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">padding</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
- <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">dilation</span><span class="o">=</span><span class="n">dilation</span><span class="p">))</span>
- <span class="n">result</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'bn'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">num_features</span><span class="o">=</span><span class="n">out_channels</span><span class="p">))</span>
- <span class="k">return</span> <span class="n">result</span></div>
- <div class="viewcode-block" id="RepVGGBlock"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGGBlock">[docs]</a><span class="k">class</span> <span class="nc">RepVGGBlock</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="sd">'''</span>
- <span class="sd"> Repvgg block consists of three branches</span>
- <span class="sd"> 3x3: a branch of a 3x3 convolution + batchnorm + relu</span>
- <span class="sd"> 1x1: a branch of a 1x1 convolution + batchnorm + relu</span>
- <span class="sd"> no_conv_branch: a branch with only batchnorm which will only be used if input channel == output channel</span>
- <span class="sd"> (usually in all but the first block of each stage)</span>
- <span class="sd"> '''</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span>
- <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">dilation</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">build_residual_branches</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">use_relu</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
- <span class="n">use_se</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">RepVGGBlock</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">groups</span> <span class="o">=</span> <span class="n">groups</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span> <span class="o">=</span> <span class="n">in_channels</span>
- <span class="k">assert</span> <span class="n">kernel_size</span> <span class="o">==</span> <span class="mi">3</span>
- <span class="k">assert</span> <span class="n">padding</span> <span class="o">==</span> <span class="n">dilation</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">nonlinearity</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span> <span class="k">if</span> <span class="n">use_relu</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">Identity</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">se</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Identity</span><span class="p">()</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">use_se</span> <span class="k">else</span> <span class="n">SEBlock</span><span class="p">(</span><span class="n">out_channels</span><span class="p">,</span> <span class="n">internal_neurons</span><span class="o">=</span><span class="n">out_channels</span> <span class="o">//</span> <span class="mi">16</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">no_conv_branch</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span>
- <span class="n">num_features</span><span class="o">=</span><span class="n">in_channels</span><span class="p">)</span> <span class="k">if</span> <span class="n">out_channels</span> <span class="o">==</span> <span class="n">in_channels</span> <span class="ow">and</span> <span class="n">stride</span> <span class="o">==</span> <span class="mi">1</span> <span class="k">else</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span> <span class="o">=</span> <span class="n">conv_bn</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">out_channels</span><span class="p">,</span> <span class="n">dilation</span><span class="o">=</span><span class="n">dilation</span><span class="p">,</span>
- <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">padding</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">branch_1x1</span> <span class="o">=</span> <span class="n">conv_bn</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
- <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">build_residual_branches</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fuse_block_residual_branches</span><span class="p">()</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span> <span class="o">=</span> <span class="kc">True</span>
- <div class="viewcode-block" id="RepVGGBlock.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGGBlock.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">nonlinearity</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">se</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">rbr_reparam</span><span class="p">(</span><span class="n">inputs</span><span class="p">)))</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">no_conv_branch</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">id_out</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">id_out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">no_conv_branch</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">nonlinearity</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">se</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch_1x1</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span> <span class="o">+</span> <span class="n">id_out</span><span class="p">))</span></div>
- <span class="k">def</span> <span class="nf">_get_equivalent_kernel_bias</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Fuses the 3x3, 1x1 and identity branches into a single 3x3 conv layer</span>
- <span class="sd"> """</span>
- <span class="n">kernel3x3</span><span class="p">,</span> <span class="n">bias3x3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_fuse_bn_tensor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="p">)</span>
- <span class="n">kernel1x1</span><span class="p">,</span> <span class="n">bias1x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_fuse_bn_tensor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_1x1</span><span class="p">)</span>
- <span class="n">kernelid</span><span class="p">,</span> <span class="n">biasid</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_fuse_bn_tensor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">no_conv_branch</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">kernel3x3</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">_pad_1x1_to_3x3_tensor</span><span class="p">(</span><span class="n">kernel1x1</span><span class="p">)</span> <span class="o">+</span> <span class="n">kernelid</span><span class="p">,</span> <span class="n">bias3x3</span> <span class="o">+</span> <span class="n">bias1x1</span> <span class="o">+</span> <span class="n">biasid</span>
- <span class="k">def</span> <span class="nf">_pad_1x1_to_3x3_tensor</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">kernel1x1</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> padding the 1x1 convolution weights with zeros to be able to fuse the 3x3 conv layer with the 1x1</span>
- <span class="sd"> :param kernel1x1: weights of the 1x1 convolution</span>
- <span class="sd"> :type kernel1x1:</span>
- <span class="sd"> :return: padded 1x1 weights</span>
- <span class="sd"> :rtype:</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">kernel1x1</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">return</span> <span class="mi">0</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">pad</span><span class="p">(</span><span class="n">kernel1x1</span><span class="p">,</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
- <span class="k">def</span> <span class="nf">_fuse_bn_tensor</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">branch</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Fusing of the batchnorm into the conv layer.</span>
- <span class="sd"> If the branch is the identity branch (no conv) the kernel will simply be eye.</span>
- <span class="sd"> :param branch:</span>
- <span class="sd"> :type branch:</span>
- <span class="sd"> :return:</span>
- <span class="sd"> :rtype:</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">branch</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">return</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">branch</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">):</span>
- <span class="n">kernel</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">weight</span>
- <span class="n">running_mean</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">bn</span><span class="o">.</span><span class="n">running_mean</span>
- <span class="n">running_var</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">bn</span><span class="o">.</span><span class="n">running_var</span>
- <span class="n">gamma</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">bn</span><span class="o">.</span><span class="n">weight</span>
- <span class="n">beta</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">bn</span><span class="o">.</span><span class="n">bias</span>
- <span class="n">eps</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">bn</span><span class="o">.</span><span class="n">eps</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">branch</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'id_tensor'</span><span class="p">):</span>
- <span class="n">input_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">groups</span>
- <span class="n">kernel_value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">input_dim</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span><span class="p">):</span>
- <span class="n">kernel_value</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">i</span> <span class="o">%</span> <span class="n">input_dim</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">id_tensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">kernel_value</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">branch</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
- <span class="n">kernel</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">id_tensor</span>
- <span class="n">running_mean</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">running_mean</span>
- <span class="n">running_var</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">running_var</span>
- <span class="n">gamma</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">weight</span>
- <span class="n">beta</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">bias</span>
- <span class="n">eps</span> <span class="o">=</span> <span class="n">branch</span><span class="o">.</span><span class="n">eps</span>
- <span class="n">std</span> <span class="o">=</span> <span class="p">(</span><span class="n">running_var</span> <span class="o">+</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">sqrt</span><span class="p">()</span>
- <span class="n">t</span> <span class="o">=</span> <span class="p">(</span><span class="n">gamma</span> <span class="o">/</span> <span class="n">std</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">kernel</span> <span class="o">*</span> <span class="n">t</span><span class="p">,</span> <span class="n">beta</span> <span class="o">-</span> <span class="n">running_mean</span> <span class="o">*</span> <span class="n">gamma</span> <span class="o">/</span> <span class="n">std</span>
- <div class="viewcode-block" id="RepVGGBlock.fuse_block_residual_branches"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGGBlock.fuse_block_residual_branches">[docs]</a> <span class="k">def</span> <span class="nf">fuse_block_residual_branches</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> converts a repvgg block from training model (with branches) to deployment mode (vgg like model)</span>
- <span class="sd"> :return:</span>
- <span class="sd"> :rtype:</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">"build_residual_branches"</span><span class="p">)</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span><span class="p">:</span>
- <span class="k">return</span>
- <span class="n">kernel</span><span class="p">,</span> <span class="n">bias</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_equivalent_kernel_bias</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">rbr_reparam</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">out_channels</span><span class="p">,</span>
- <span class="n">kernel_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">stride</span><span class="p">,</span>
- <span class="n">padding</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">padding</span><span class="p">,</span> <span class="n">dilation</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">dilation</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">branch_3x3</span><span class="o">.</span><span class="n">conv</span><span class="o">.</span><span class="n">groups</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">rbr_reparam</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">kernel</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">rbr_reparam</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">bias</span>
- <span class="k">for</span> <span class="n">para</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
- <span class="n">para</span><span class="o">.</span><span class="n">detach_</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="fm">__delattr__</span><span class="p">(</span><span class="s1">'branch_3x3'</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="fm">__delattr__</span><span class="p">(</span><span class="s1">'branch_1x1'</span><span class="p">)</span>
- <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">'no_conv_branch'</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="fm">__delattr__</span><span class="p">(</span><span class="s1">'no_conv_branch'</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span> <span class="o">=</span> <span class="kc">False</span></div></div>
- <div class="viewcode-block" id="RepVGG"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGG">[docs]</a><span class="k">class</span> <span class="nc">RepVGG</span><span class="p">(</span><span class="n">SgModule</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">struct</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
- <span class="n">build_residual_branches</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">use_se</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">in_channels</span><span class="o">=</span><span class="mi">3</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param struct: list containing number of blocks per repvgg stage</span>
- <span class="sd"> :param num_classes: number of classes if nut in backbone mode</span>
- <span class="sd"> :param width_multiplier: list of per stage width multiplier or float if using single value for all stages</span>
- <span class="sd"> :param build_residual_branches: whether to add residual connections or not</span>
- <span class="sd"> :param use_se: use squeeze and excitation layers</span>
- <span class="sd"> :param backbone_mode: if true, dropping the final linear layer</span>
- <span class="sd"> :param in_channels: input channels</span>
- <span class="sd"> """</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">RepVGG</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">width_multiplier</span><span class="p">,</span> <span class="nb">float</span><span class="p">):</span>
- <span class="n">width_multiplier</span> <span class="o">=</span> <span class="p">[</span><span class="n">width_multiplier</span><span class="p">]</span> <span class="o">*</span> <span class="mi">4</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">width_multiplier</span><span class="p">)</span> <span class="o">==</span> <span class="mi">4</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span> <span class="o">=</span> <span class="n">build_residual_branches</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">use_se</span> <span class="o">=</span> <span class="n">use_se</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span> <span class="o">=</span> <span class="n">backbone_mode</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">in_planes</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">64</span> <span class="o">*</span> <span class="n">width_multiplier</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">stem</span> <span class="o">=</span> <span class="n">RepVGGBlock</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">in_planes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
- <span class="n">build_residual_branches</span><span class="o">=</span><span class="n">build_residual_branches</span><span class="p">,</span> <span class="n">use_se</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_se</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cur_layer_idx</span> <span class="o">=</span> <span class="mi">1</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">stage1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_stage</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="mi">64</span> <span class="o">*</span> <span class="n">width_multiplier</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">struct</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">stage2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_stage</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="mi">128</span> <span class="o">*</span> <span class="n">width_multiplier</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">struct</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">stage3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_stage</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="mi">256</span> <span class="o">*</span> <span class="n">width_multiplier</span><span class="p">[</span><span class="mi">2</span><span class="p">]),</span> <span class="n">struct</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">stage4</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_stage</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="mi">512</span> <span class="o">*</span> <span class="n">width_multiplier</span><span class="p">[</span><span class="mi">3</span><span class="p">]),</span> <span class="n">struct</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">(</span><span class="n">output_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="mi">512</span> <span class="o">*</span> <span class="n">width_multiplier</span><span class="p">[</span><span class="mi">3</span><span class="p">]),</span> <span class="n">num_classes</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">build_residual_branches</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span> <span class="c1"># fusing has to be made in eval mode. When called in init, model will be built in eval mode</span>
- <span class="n">fuse_repvgg_blocks_residual_branches</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_make_stage</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">struct</span><span class="p">,</span> <span class="n">stride</span><span class="p">):</span>
- <span class="n">strides</span> <span class="o">=</span> <span class="p">[</span><span class="n">stride</span><span class="p">]</span> <span class="o">+</span> <span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">struct</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">blocks</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">stride</span> <span class="ow">in</span> <span class="n">strides</span><span class="p">:</span>
- <span class="n">blocks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">RepVGGBlock</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">in_planes</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">planes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
- <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">build_residual_branches</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span><span class="p">,</span>
- <span class="n">use_se</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_se</span><span class="p">))</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">in_planes</span> <span class="o">=</span> <span class="n">planes</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cur_layer_idx</span> <span class="o">+=</span> <span class="mi">1</span>
- <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">blocks</span><span class="p">)</span>
- <div class="viewcode-block" id="RepVGG.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGG.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">stem</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">stage1</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">stage2</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">stage3</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">stage4</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span><span class="p">:</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">out</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">out</span></div>
- <div class="viewcode-block" id="RepVGG.prep_model_for_conversion"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGG.prep_model_for_conversion">[docs]</a> <span class="k">def</span> <span class="nf">prep_model_for_conversion</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_size</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span><span class="p">:</span>
- <span class="n">fuse_repvgg_blocks_residual_branches</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVGG.train"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVGG.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">):</span>
- <span class="k">assert</span> <span class="ow">not</span> <span class="n">mode</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_residual_branches</span><span class="p">,</span> <span class="s2">"Trying to train a model without residual branches, "</span> \
- <span class="s2">"set arch_params.build_residual_branches to True and retrain the model"</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">RepVGG</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">mode</span><span class="o">=</span><span class="n">mode</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="RepVggCustom"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggCustom">[docs]</a><span class="k">class</span> <span class="nc">RepVggCustom</span><span class="p">(</span><span class="n">RepVGG</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">struct</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span>
- <span class="n">width_multiplier</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">width_multiplier</span><span class="p">,</span>
- <span class="n">build_residual_branches</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">build_residual_branches</span><span class="p">,</span>
- <span class="n">use_se</span><span class="o">=</span><span class="n">get_param</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'use_se'</span><span class="p">,</span> <span class="kc">False</span><span class="p">),</span>
- <span class="n">backbone_mode</span><span class="o">=</span><span class="n">get_param</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'backbone_mode'</span><span class="p">,</span> <span class="kc">False</span><span class="p">),</span>
- <span class="n">in_channels</span><span class="o">=</span><span class="n">get_param</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'in_channels'</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span></div>
- <div class="viewcode-block" id="RepVggA0"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggA0">[docs]</a><span class="k">class</span> <span class="nc">RepVggA0</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">14</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mf">0.75</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggA1"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggA1">[docs]</a><span class="k">class</span> <span class="nc">RepVggA1</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">14</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggA2"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggA2">[docs]</a><span class="k">class</span> <span class="nc">RepVggA2</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">14</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">,</span> <span class="mf">2.75</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggB0"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggB0">[docs]</a><span class="k">class</span> <span class="nc">RepVggB0</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggB1"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggB1">[docs]</a><span class="k">class</span> <span class="nc">RepVggB1</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggB2"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggB2">[docs]</a><span class="k">class</span> <span class="nc">RepVggB2</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mf">2.5</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">,</span> <span class="mi">5</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggB3"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggB3">[docs]</a><span class="k">class</span> <span class="nc">RepVggB3</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- <div class="viewcode-block" id="RepVggD2SE"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.repvgg.RepVggD2SE">[docs]</a><span class="k">class</span> <span class="nc">RepVggD2SE</span><span class="p">(</span><span class="n">RepVggCustom</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
- <span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="n">struct</span><span class="o">=</span><span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">14</span><span class="p">,</span> <span class="mi">24</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">width_multiplier</span><span class="o">=</span><span class="p">[</span><span class="mf">2.5</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">,</span> <span class="mi">5</span><span class="p">])</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">)</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|