1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.models.mobilenetv3 — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Contents:</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html">Introduction</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">super_gradients.training package</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.models.mobilenetv3</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.models.mobilenetv3</h1><div class="highlight"><pre>
- <span></span><span class="sd">"""</span>
- <span class="sd">Creates a MobileNetV3 Model as defined in:</span>
- <span class="sd">Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019).</span>
- <span class="sd">Searching for MobileNetV3</span>
- <span class="sd">arXiv preprint arXiv:1905.02244.</span>
- <span class="sd">"""</span>
- <span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
- <span class="kn">import</span> <span class="nn">math</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.models.sg_module</span> <span class="kn">import</span> <span class="n">SgModule</span>
- <span class="k">def</span> <span class="nf">_make_divisible</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">divisor</span><span class="p">,</span> <span class="n">min_value</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This function is taken from the original tf repo.</span>
- <span class="sd"> It ensures that all layers have a channel number that is divisible by 8</span>
- <span class="sd"> It can be seen here:</span>
- <span class="sd"> https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">min_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">min_value</span> <span class="o">=</span> <span class="n">divisor</span>
- <span class="n">new_v</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">min_value</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">v</span> <span class="o">+</span> <span class="n">divisor</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">//</span> <span class="n">divisor</span> <span class="o">*</span> <span class="n">divisor</span><span class="p">)</span>
- <span class="c1"># Make sure that round down does not go down by more than 10%.</span>
- <span class="k">if</span> <span class="n">new_v</span> <span class="o"><</span> <span class="mf">0.9</span> <span class="o">*</span> <span class="n">v</span><span class="p">:</span>
- <span class="n">new_v</span> <span class="o">+=</span> <span class="n">divisor</span>
- <span class="k">return</span> <span class="n">new_v</span>
- <div class="viewcode-block" id="h_sigmoid"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.h_sigmoid">[docs]</a><span class="k">class</span> <span class="nc">h_sigmoid</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">h_sigmoid</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU6</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="n">inplace</span><span class="p">)</span>
- <div class="viewcode-block" id="h_sigmoid.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.h_sigmoid.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="mi">3</span><span class="p">)</span> <span class="o">/</span> <span class="mi">6</span></div></div>
- <div class="viewcode-block" id="h_swish"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.h_swish">[docs]</a><span class="k">class</span> <span class="nc">h_swish</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">h_swish</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sigmoid</span> <span class="o">=</span> <span class="n">h_sigmoid</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="n">inplace</span><span class="p">)</span>
- <div class="viewcode-block" id="h_swish.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.h_swish.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="k">return</span> <span class="n">x</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="SELayer"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.SELayer">[docs]</a><span class="k">class</span> <span class="nc">SELayer</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">channel</span><span class="p">,</span> <span class="n">reduction</span><span class="o">=</span><span class="mi">4</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">SELayer</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">avg_pool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">channel</span><span class="p">,</span> <span class="n">_make_divisible</span><span class="p">(</span><span class="n">channel</span> <span class="o">//</span> <span class="n">reduction</span><span class="p">,</span> <span class="mi">8</span><span class="p">)),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">_make_divisible</span><span class="p">(</span><span class="n">channel</span> <span class="o">//</span> <span class="n">reduction</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span> <span class="n">channel</span><span class="p">),</span>
- <span class="n">h_sigmoid</span><span class="p">()</span>
- <span class="p">)</span>
- <div class="viewcode-block" id="SELayer.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.SELayer.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
- <span class="n">y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">avg_pool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
- <span class="n">y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span></div></div>
- <div class="viewcode-block" id="conv_3x3_bn"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.conv_3x3_bn">[docs]</a><span class="k">def</span> <span class="nf">conv_3x3_bn</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">oup</span><span class="p">,</span> <span class="n">stride</span><span class="p">):</span>
- <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">oup</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">oup</span><span class="p">),</span>
- <span class="n">h_swish</span><span class="p">()</span>
- <span class="p">)</span></div>
- <div class="viewcode-block" id="conv_1x1_bn"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.conv_1x1_bn">[docs]</a><span class="k">def</span> <span class="nf">conv_1x1_bn</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">oup</span><span class="p">):</span>
- <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">oup</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">oup</span><span class="p">),</span>
- <span class="n">h_swish</span><span class="p">()</span>
- <span class="p">)</span></div>
- <div class="viewcode-block" id="InvertedResidual"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.InvertedResidual">[docs]</a><span class="k">class</span> <span class="nc">InvertedResidual</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inp</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">oup</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">use_se</span><span class="p">,</span> <span class="n">use_hs</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">InvertedResidual</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="k">assert</span> <span class="n">stride</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">identity</span> <span class="o">=</span> <span class="n">stride</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">and</span> <span class="n">inp</span> <span class="o">==</span> <span class="n">oup</span>
- <span class="k">if</span> <span class="n">inp</span> <span class="o">==</span> <span class="n">hidden_dim</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
- <span class="c1"># dw</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="p">(</span><span class="n">kernel_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">hidden_dim</span><span class="p">,</span>
- <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">),</span>
- <span class="n">h_swish</span><span class="p">()</span> <span class="k">if</span> <span class="n">use_hs</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
- <span class="c1"># Squeeze-and-Excite</span>
- <span class="n">SELayer</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">)</span> <span class="k">if</span> <span class="n">use_se</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">Identity</span><span class="p">(),</span>
- <span class="c1"># pw-linear</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">,</span> <span class="n">oup</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">oup</span><span class="p">),</span>
- <span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
- <span class="c1"># pw</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">),</span>
- <span class="n">h_swish</span><span class="p">()</span> <span class="k">if</span> <span class="n">use_hs</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
- <span class="c1"># dw</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="p">(</span><span class="n">kernel_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">hidden_dim</span><span class="p">,</span>
- <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">),</span>
- <span class="c1"># Squeeze-and-Excite</span>
- <span class="n">SELayer</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">)</span> <span class="k">if</span> <span class="n">use_se</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">Identity</span><span class="p">(),</span>
- <span class="n">h_swish</span><span class="p">()</span> <span class="k">if</span> <span class="n">use_hs</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
- <span class="c1"># pw-linear</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">,</span> <span class="n">oup</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">oup</span><span class="p">),</span>
- <span class="p">)</span>
- <div class="viewcode-block" id="InvertedResidual.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.InvertedResidual.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">identity</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></div></div>
- <div class="viewcode-block" id="MobileNetV3"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.MobileNetV3">[docs]</a><span class="k">class</span> <span class="nc">MobileNetV3</span><span class="p">(</span><span class="n">SgModule</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cfgs</span><span class="p">,</span> <span class="n">mode</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">width_mult</span><span class="o">=</span><span class="mf">1.</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">MobileNetV3</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="c1"># setting of inverted residual blocks</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cfgs</span> <span class="o">=</span> <span class="n">cfgs</span>
- <span class="k">assert</span> <span class="n">mode</span> <span class="ow">in</span> <span class="p">[</span><span class="s1">'large'</span><span class="p">,</span> <span class="s1">'small'</span><span class="p">]</span>
- <span class="c1"># building first layer</span>
- <span class="n">input_channel</span> <span class="o">=</span> <span class="n">_make_divisible</span><span class="p">(</span><span class="mi">16</span> <span class="o">*</span> <span class="n">width_mult</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
- <span class="n">layers</span> <span class="o">=</span> <span class="p">[</span><span class="n">conv_3x3_bn</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">input_channel</span><span class="p">,</span> <span class="mi">2</span><span class="p">)]</span>
- <span class="c1"># building inverted residual blocks</span>
- <span class="n">block</span> <span class="o">=</span> <span class="n">InvertedResidual</span>
- <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">c</span><span class="p">,</span> <span class="n">use_se</span><span class="p">,</span> <span class="n">use_hs</span><span class="p">,</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">cfgs</span><span class="p">:</span>
- <span class="n">output_channel</span> <span class="o">=</span> <span class="n">_make_divisible</span><span class="p">(</span><span class="n">c</span> <span class="o">*</span> <span class="n">width_mult</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
- <span class="n">exp_size</span> <span class="o">=</span> <span class="n">_make_divisible</span><span class="p">(</span><span class="n">input_channel</span> <span class="o">*</span> <span class="n">t</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
- <span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="n">input_channel</span><span class="p">,</span> <span class="n">exp_size</span><span class="p">,</span> <span class="n">output_channel</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">use_se</span><span class="p">,</span> <span class="n">use_hs</span><span class="p">))</span>
- <span class="n">input_channel</span> <span class="o">=</span> <span class="n">output_channel</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">features</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">)</span>
- <span class="c1"># building last several layers</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">conv_1x1_bn</span><span class="p">(</span><span class="n">input_channel</span><span class="p">,</span> <span class="n">exp_size</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
- <span class="n">output_channel</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'large'</span><span class="p">:</span> <span class="mi">1280</span><span class="p">,</span> <span class="s1">'small'</span><span class="p">:</span> <span class="mi">1024</span><span class="p">}</span>
- <span class="n">output_channel</span> <span class="o">=</span> <span class="n">_make_divisible</span><span class="p">(</span><span class="n">output_channel</span><span class="p">[</span><span class="n">mode</span><span class="p">]</span> <span class="o">*</span> <span class="n">width_mult</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span> <span class="k">if</span> <span class="n">width_mult</span> <span class="o">></span> <span class="mf">1.0</span> <span class="k">else</span> <span class="n">output_channel</span><span class="p">[</span>
- <span class="n">mode</span><span class="p">]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">exp_size</span><span class="p">,</span> <span class="n">output_channel</span><span class="p">),</span>
- <span class="n">h_swish</span><span class="p">(),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="mf">0.2</span><span class="p">),</span>
- <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">output_channel</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">),</span>
- <span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_initialize_weights</span><span class="p">()</span>
- <div class="viewcode-block" id="MobileNetV3.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.MobileNetV3.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">features</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">x</span></div>
- <span class="k">def</span> <span class="nf">_initialize_weights</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">modules</span><span class="p">():</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">):</span>
- <span class="n">n</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span><span class="o">.</span><span class="n">out_channels</span>
- <span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.</span> <span class="o">/</span> <span class="n">n</span><span class="p">))</span>
- <span class="k">if</span> <span class="n">m</span><span class="o">.</span><span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
- <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">):</span>
- <span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">fill_</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
- <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">):</span>
- <span class="n">n</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
- <span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span></div>
- <div class="viewcode-block" id="mobilenetv3_large"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.mobilenetv3_large">[docs]</a><span class="k">def</span> <span class="nf">mobilenetv3_large</span><span class="p">(</span><span class="n">arch_params</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Constructs a MobileNetV3-Large model</span>
- <span class="sd"> """</span>
- <span class="n">width_mult</span> <span class="o">=</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">width_mult</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'width_mult'</span><span class="p">)</span> <span class="k">else</span> <span class="mf">1.</span>
- <span class="n">cfgs</span> <span class="o">=</span> <span class="p">[</span>
- <span class="c1"># k, t, c, SE, HS, s</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">24</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">24</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">80</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mf">2.5</span><span class="p">,</span> <span class="mi">80</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mf">2.3</span><span class="p">,</span> <span class="mi">80</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mf">2.3</span><span class="p">,</span> <span class="mi">80</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">112</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">112</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">160</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">160</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">160</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
- <span class="p">]</span>
- <span class="k">return</span> <span class="n">MobileNetV3</span><span class="p">(</span><span class="n">cfgs</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'large'</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">width_mult</span><span class="o">=</span><span class="n">width_mult</span><span class="p">)</span></div>
- <div class="viewcode-block" id="mobilenetv3_small"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.mobilenetv3_small">[docs]</a><span class="k">def</span> <span class="nf">mobilenetv3_small</span><span class="p">(</span><span class="n">arch_params</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Constructs a MobileNetV3-Small model</span>
- <span class="sd"> """</span>
- <span class="n">width_mult</span> <span class="o">=</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">width_mult</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'width_mult'</span><span class="p">)</span> <span class="k">else</span> <span class="mf">1.</span>
- <span class="n">cfgs</span> <span class="o">=</span> <span class="p">[</span>
- <span class="c1"># k, t, c, SE, HS, s</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mf">4.5</span><span class="p">,</span> <span class="mi">24</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mf">3.67</span><span class="p">,</span> <span class="mi">24</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">48</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">48</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
- <span class="p">]</span>
- <span class="k">return</span> <span class="n">MobileNetV3</span><span class="p">(</span><span class="n">cfgs</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'small'</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">width_mult</span><span class="o">=</span><span class="n">width_mult</span><span class="p">)</span></div>
- <div class="viewcode-block" id="mobilenetv3_custom"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.mobilenetv3.mobilenetv3_custom">[docs]</a><span class="k">def</span> <span class="nf">mobilenetv3_custom</span><span class="p">(</span><span class="n">arch_params</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Constructs a MobileNetV3-Customized model</span>
- <span class="sd"> """</span>
- <span class="k">return</span> <span class="n">MobileNetV3</span><span class="p">(</span><span class="n">cfgs</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">structure</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span>
- <span class="n">width_mult</span><span class="o">=</span><span class="n">arch_params</span><span class="o">.</span><span class="n">width_mult</span><span class="p">)</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|