1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.models.darknet53 — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Contents:</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html">Introduction</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">super_gradients.training package</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.models.darknet53</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.models.darknet53</h1><div class="highlight"><pre>
- <span></span><span class="sd">"""</span>
- <span class="sd">Darknet</span>
- <span class="sd">credits: https://github.com/ultralytics</span>
- <span class="sd">"""</span>
- <span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.models.sg_module</span> <span class="kn">import</span> <span class="n">SgModule</span>
- <div class="viewcode-block" id="create_conv_module"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.create_conv_module">[docs]</a><span class="k">def</span> <span class="nf">create_conv_module</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
- <span class="n">padding</span> <span class="o">=</span> <span class="p">(</span><span class="n">kernel_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span>
- <span class="n">nn_sequential_module</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">()</span>
- <span class="n">nn_sequential_module</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'Conv2d'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span>
- <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">padding</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
- <span class="n">nn_sequential_module</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'BatchNorm2d'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">out_channels</span><span class="p">))</span>
- <span class="n">nn_sequential_module</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'LeakyRelu'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">())</span>
- <span class="k">return</span> <span class="n">nn_sequential_module</span></div>
- <span class="c1"># Residual block</span>
- <div class="viewcode-block" id="DarkResidualBlock"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.DarkResidualBlock">[docs]</a><span class="k">class</span> <span class="nc">DarkResidualBlock</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> DarkResidualBlock - The Darknet Residual Block</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">shortcut</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">DarkResidualBlock</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">shortcut</span> <span class="o">=</span> <span class="n">shortcut</span>
- <span class="n">reduced_channels</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">in_channels</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">layer1</span> <span class="o">=</span> <span class="n">create_conv_module</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">reduced_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">layer2</span> <span class="o">=</span> <span class="n">create_conv_module</span><span class="p">(</span><span class="n">reduced_channels</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">)</span>
- <div class="viewcode-block" id="DarkResidualBlock.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.DarkResidualBlock.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="n">residual</span> <span class="o">=</span> <span class="n">x</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer2</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
- <span class="n">out</span> <span class="o">+=</span> <span class="n">residual</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">shortcut</span> <span class="k">else</span> <span class="n">out</span>
- <span class="k">return</span> <span class="n">out</span></div></div>
- <div class="viewcode-block" id="Darknet53Base"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.Darknet53Base">[docs]</a><span class="k">class</span> <span class="nc">Darknet53Base</span><span class="p">(</span><span class="n">SgModule</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">Darknet53Base</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="c1"># THE MODULES LIST IS APPROACHABLE FROM "OUTSIDE THE CLASS - SO WE CAN CHANGE IT'S STRUCTURE"</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">create_conv_module</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">))</span> <span class="c1"># 0</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">create_conv_module</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># 1</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">DarkResidualBlock</span><span class="p">,</span> <span class="n">in_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">num_blocks</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span> <span class="c1"># 2</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">create_conv_module</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># 3</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">DarkResidualBlock</span><span class="p">,</span> <span class="n">in_channels</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">num_blocks</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># 4</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">create_conv_module</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># 5</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">DarkResidualBlock</span><span class="p">,</span> <span class="n">in_channels</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">num_blocks</span><span class="o">=</span><span class="mi">8</span><span class="p">))</span> <span class="c1"># 6</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">create_conv_module</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># 7</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">DarkResidualBlock</span><span class="p">,</span> <span class="n">in_channels</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">num_blocks</span><span class="o">=</span><span class="mi">8</span><span class="p">))</span> <span class="c1"># 8</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">create_conv_module</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># 9</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">DarkResidualBlock</span><span class="p">,</span> <span class="n">in_channels</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span> <span class="n">num_blocks</span><span class="o">=</span><span class="mi">4</span><span class="p">))</span> <span class="c1"># 10</span>
- <div class="viewcode-block" id="Darknet53Base.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.Darknet53Base.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="n">out</span> <span class="o">=</span> <span class="n">x</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">module</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="p">):</span>
- <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="p">[</span><span class="n">i</span><span class="p">](</span><span class="n">out</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">out</span></div>
- <span class="k">def</span> <span class="nf">_make_layer</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">num_blocks</span><span class="p">):</span>
- <span class="n">layers</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">num_blocks</span><span class="p">):</span>
- <span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="n">in_channels</span><span class="p">))</span>
- <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">)</span></div>
- <div class="viewcode-block" id="Darknet53"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.Darknet53">[docs]</a><span class="k">class</span> <span class="nc">Darknet53</span><span class="p">(</span><span class="n">Darknet53Base</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">Darknet53</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="c1"># IN ORDER TO ALLOW PASSING PARAMETERS WITH ARCH_PARAMS BUT NOT BREAK YOLOV3 INTEGRATION</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span> <span class="o">=</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">backbone_mode</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'backbone_mode'</span><span class="p">)</span> <span class="k">else</span> <span class="n">backbone_mode</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="o">=</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">'num_classes'</span><span class="p">)</span> <span class="k">else</span> <span class="n">num_classes</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span><span class="p">:</span>
- <span class="c1"># IF NOT USED AS A BACKEND BUT AS A CLASSIFIER WE ADD THE CLASSIFICATION LAYERS</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">nn_sequential_block</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">()</span>
- <span class="n">nn_sequential_block</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'global_avg_pool'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)))</span>
- <span class="n">nn_sequential_block</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'view'</span><span class="p">,</span> <span class="n">ViewModule</span><span class="p">(</span><span class="mi">1024</span><span class="p">))</span>
- <span class="n">nn_sequential_block</span><span class="o">.</span><span class="n">add_module</span><span class="p">(</span><span class="s1">'fc'</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">1024</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">))</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn_sequential_block</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'num_classes must be specified to use Darknet53 as a classifier'</span><span class="p">)</span>
- <div class="viewcode-block" id="Darknet53.get_modules_list"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.Darknet53.get_modules_list">[docs]</a> <span class="k">def</span> <span class="nf">get_modules_list</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">modules_list</span></div>
- <div class="viewcode-block" id="Darknet53.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.Darknet53.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> forward - Forward pass on the modules list</span>
- <span class="sd"> :param x: The input data</span>
- <span class="sd"> :return: forward pass for backbone pass or classification pass</span>
- <span class="sd"> """</span>
- <span class="k">return</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></div></div>
- <span class="c1"># Residual block</span>
- <div class="viewcode-block" id="ViewModule"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.ViewModule">[docs]</a><span class="k">class</span> <span class="nc">ViewModule</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Returns a reshaped version of the input, to be used in None-Backbone Mode</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">features</span><span class="o">=</span><span class="mi">1024</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">ViewModule</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">features</span> <span class="o">=</span> <span class="n">features</span>
- <div class="viewcode-block" id="ViewModule.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.darknet53.ViewModule.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
- <span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">features</span><span class="p">)</span></div></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|