Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test_train_with_torch_scheduler.py 4.6 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  1. import unittest
  2. import torch
  3. from super_gradients import Trainer
  4. from super_gradients.common.object_names import Models
  5. from super_gradients.training import models
  6. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  7. from torchmetrics import Metric
  8. from super_gradients.training.utils.callbacks import Phase
  9. class DummyMetric(Metric):
  10. def update(self, *args, **kwargs) -> None:
  11. pass
  12. def compute(self):
  13. return 1
  14. class TrainWithTorchSchedulerTest(unittest.TestCase):
  15. def _run_scheduler_test(self, scheduler_name, scheduler_params, expected_lr, epochs=2, test_resume=False):
  16. trainer = Trainer("test_" + scheduler_name + "_torch_scheduler")
  17. dataloader = classification_test_dataloader(batch_size=10)
  18. model = models.get(Models.RESNET18, num_classes=5)
  19. train_params = {
  20. "max_epochs": epochs,
  21. "lr_mode": {scheduler_name: scheduler_params},
  22. "lr_warmup_epochs": 0,
  23. "initial_lr": 0.1,
  24. "loss": torch.nn.CrossEntropyLoss(),
  25. "optimizer": "SGD",
  26. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  27. "train_metrics_list": [DummyMetric()],
  28. "valid_metrics_list": [DummyMetric()],
  29. "metric_to_watch": "DummyMetric",
  30. "greater_metric_to_watch_is_better": True,
  31. }
  32. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  33. if test_resume:
  34. train_params["max_epochs"] = epochs + 1
  35. train_params["resume"] = True
  36. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  37. self.assertAlmostEqual(expected_lr, trainer.optimizer.param_groups[0]["lr"], delta=1e-8)
  38. def test_train_with_StepLR_torch_scheduler(self):
  39. scheduler_params = {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}
  40. self._run_scheduler_test("StepLR", scheduler_params, 0.001)
  41. def test_train_with_LambdaLR_torch_scheduler(self):
  42. def lr_compute_fn(epoch):
  43. return 1 / (epoch + 10)
  44. scheduler_params = {"lr_lambda": lr_compute_fn, "phase": Phase.TRAIN_EPOCH_END}
  45. self._run_scheduler_test("LambdaLR", scheduler_params, 0.1 / 12)
  46. def test_train_with_MultiStepLR_torch_scheduler(self):
  47. scheduler_params = {"milestones": [0, 1], "phase": Phase.TRAIN_EPOCH_END}
  48. self._run_scheduler_test("MultiStepLR", scheduler_params, 0.001)
  49. def test_train_with_ConstantLR_torch_scheduler(self):
  50. scheduler_params = {"factor": 0.5, "total_iters": 4, "phase": Phase.TRAIN_EPOCH_END}
  51. self._run_scheduler_test("ConstantLR", scheduler_params, 0.05)
  52. def test_train_with_CosineAnnealingLR_torch_scheduler(self):
  53. scheduler_params = {"T_max": 3, "phase": Phase.TRAIN_EPOCH_END}
  54. self._run_scheduler_test("CosineAnnealingLR", scheduler_params, 0.025)
  55. def test_train_with_CosineAnnealingWarmRestarts_torch_scheduler(self):
  56. scheduler_params = {"T_0": 2, "phase": Phase.TRAIN_EPOCH_END}
  57. self._run_scheduler_test("CosineAnnealingWarmRestarts", scheduler_params, 0.1, 4)
  58. def test_train_with_CyclicLR_torch_scheduler(self):
  59. scheduler_params = {"base_lr": 0.01, "max_lr": 0.1, "phase": Phase.TRAIN_EPOCH_END}
  60. self._run_scheduler_test("CyclicLR", scheduler_params, 0.01018, 4)
  61. def test_train_with_ExponentialLR_torch_scheduler(self):
  62. scheduler_params = {"gamma": 0.01, "phase": Phase.TRAIN_EPOCH_END}
  63. self._run_scheduler_test("ExponentialLR", scheduler_params, 1e-09, 4)
  64. def test_train_with_LinearLR_torch_scheduler(self):
  65. scheduler_params = {"phase": Phase.TRAIN_EPOCH_END}
  66. self._run_scheduler_test("LinearLR", scheduler_params, 0.08666666666666668, 4)
  67. def test_train_with_ReduceLROnPlateau_torch_scheduler(self):
  68. scheduler_params = {"patience": 0, "phase": Phase.TRAIN_EPOCH_END, "metric_name": "DummyMetric"}
  69. self._run_scheduler_test("ReduceLROnPlateau", scheduler_params, 0.01)
  70. def test_resume_train_with_torch_scheduler(self):
  71. scheduler_params = {"gamma": 0.1, "step_size": 1, "phase": Phase.TRAIN_EPOCH_END}
  72. self._run_scheduler_test("StepLR", scheduler_params, 0.0001, 2, True)
  73. def test_resume_train_with_ReduceLROnPlateau_torch_scheduler(self):
  74. scheduler_params = {"patience": 0, "phase": Phase.TRAIN_EPOCH_END, "metric_name": "DummyMetric"}
  75. self._run_scheduler_test("ReduceLROnPlateau", scheduler_params, 0.001, 2, True)
  76. if __name__ == "__main__":
  77. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...