Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test_media_utils.py 1.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
  1. import unittest
  2. import numpy as np
  3. import torch
  4. from super_gradients.training.utils.media.image import load_images
  5. class TrainingParamsTest(unittest.TestCase):
  6. def test_load_images(self):
  7. # list - numpy
  8. list_images = [np.zeros((3, 100, 100)) for _ in range(15)]
  9. loaded_images = load_images(list_images)
  10. self.assertEqual(len(loaded_images), 15)
  11. for image in loaded_images:
  12. self.assertIsInstance(image, np.ndarray)
  13. self.assertEqual(image.shape, (100, 100, 3))
  14. # numpy - batch
  15. np_images = np.zeros((15, 3, 100, 100))
  16. loaded_images = load_images(np_images)
  17. self.assertEqual(len(loaded_images), 15)
  18. for image in loaded_images:
  19. self.assertIsInstance(image, np.ndarray)
  20. self.assertEqual(image.shape, (100, 100, 3))
  21. # list - torcj
  22. list_images = [torch.zeros((3, 100, 100)) for _ in range(15)]
  23. loaded_images = load_images(list_images)
  24. self.assertEqual(len(loaded_images), 15)
  25. for image in loaded_images:
  26. self.assertIsInstance(image, np.ndarray)
  27. self.assertEqual(image.shape, (100, 100, 3))
  28. # torch - batch
  29. torch_images = torch.zeros((15, 3, 100, 100))
  30. loaded_images = load_images(torch_images)
  31. self.assertEqual(len(loaded_images), 15)
  32. for image in loaded_images:
  33. self.assertIsInstance(image, np.ndarray)
  34. self.assertEqual(image.shape, (100, 100, 3))
  35. if __name__ == "__main__":
  36. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...