1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
- import unittest
- from torch import Tensor
- from torchmetrics import Accuracy
- import torch
- from super_gradients import Trainer
- from super_gradients.common.object_names import Models
- from super_gradients.training import models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- class CriterionWithUnnamedComponents(torch.nn.CrossEntropyLoss):
- def __init__(self):
- super(CriterionWithUnnamedComponents, self).__init__()
- def forward(self, input: Tensor, target: Tensor) -> tuple:
- loss = super(CriterionWithUnnamedComponents, self).forward(input=input, target=target)
- items = torch.cat((loss.unsqueeze(0), loss.unsqueeze(0))).detach()
- return loss, items
- class CriterionWithNamedComponents(CriterionWithUnnamedComponents):
- def __init__(self):
- super(CriterionWithNamedComponents, self).__init__()
- self.component_names = ["loss_A", "loss_B"]
- class LossLoggingsTest(unittest.TestCase):
- def test_single_item_logging(self):
- trainer = Trainer("test_single_item_logging", model_checkpoints_location="local")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
- train_params = {
- "max_epochs": 1,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": torch.nn.CrossEntropyLoss(),
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- self.assertListEqual(trainer.loss_logging_items_names, ["CrossEntropyLoss"])
- def test_multiple_unnamed_components_loss_logging(self):
- trainer = Trainer("test_multiple_unnamed_components_loss_logging", model_checkpoints_location="local")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
- train_params = {
- "max_epochs": 1,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": CriterionWithUnnamedComponents(),
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- self.assertListEqual(trainer.loss_logging_items_names, ["CriterionWithUnnamedComponents/loss_0", "CriterionWithUnnamedComponents/loss_1"])
- def test_multiple_named_components_loss_logging(self):
- trainer = Trainer("test_multiple_named_components_loss_logging", model_checkpoints_location="local")
- dataloader = classification_test_dataloader(batch_size=10)
- model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
- train_params = {
- "max_epochs": 1,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": CriterionWithNamedComponents(),
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
- self.assertListEqual(trainer.loss_logging_items_names, ["CriterionWithNamedComponents/loss_A", "CriterionWithNamedComponents/loss_B"])
- if __name__ == "__main__":
- unittest.main()
|