Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train_with_intialized_param_args_test.py 8.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
  1. import os
  2. import unittest
  3. import hydra
  4. import numpy as np
  5. import torch
  6. from hydra.core.global_hydra import GlobalHydra
  7. from torch.optim import SGD
  8. from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR
  9. from torchmetrics import F1Score
  10. from super_gradients import Trainer
  11. from super_gradients.common.environment.omegaconf_utils import register_hydra_resolvers
  12. from super_gradients.common.environment.path_utils import normalize_path
  13. from super_gradients.common.object_names import Models
  14. from super_gradients.training import models
  15. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  16. from super_gradients.training.metrics import Accuracy, Top5, ToyTestClassificationMetric
  17. from super_gradients.training.utils.callbacks import LRSchedulerCallback, Phase
  18. class TrainWithInitializedObjectsTest(unittest.TestCase):
  19. """
  20. Unit test for training with initialized objects passed as parameters.
  21. """
  22. def test_train_with_external_criterion(self):
  23. trainer = Trainer("external_criterion_test")
  24. dataloader = classification_test_dataloader(batch_size=10)
  25. model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
  26. train_params = {
  27. "max_epochs": 2,
  28. "lr_updates": [1],
  29. "lr_decay_factor": 0.1,
  30. "lr_mode": "StepLRScheduler",
  31. "lr_warmup_epochs": 0,
  32. "initial_lr": 0.1,
  33. "loss": torch.nn.CrossEntropyLoss(),
  34. "optimizer": "SGD",
  35. "criterion_params": {},
  36. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  37. "train_metrics_list": [Accuracy()],
  38. "valid_metrics_list": [Accuracy()],
  39. "metric_to_watch": "Accuracy",
  40. "greater_metric_to_watch_is_better": True,
  41. }
  42. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  43. def test_train_with_external_optimizer(self):
  44. trainer = Trainer("external_optimizer_test")
  45. dataloader = classification_test_dataloader(batch_size=10)
  46. model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
  47. optimizer = SGD(params=model.parameters(), lr=0.1)
  48. train_params = {
  49. "max_epochs": 2,
  50. "lr_updates": [1],
  51. "lr_decay_factor": 0.1,
  52. "lr_mode": "StepLRScheduler",
  53. "lr_warmup_epochs": 0,
  54. "loss": "CrossEntropyLoss",
  55. "optimizer": optimizer,
  56. "criterion_params": {},
  57. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  58. "train_metrics_list": [Accuracy(), Top5()],
  59. "valid_metrics_list": [Accuracy(), Top5()],
  60. "metric_to_watch": "Accuracy",
  61. "greater_metric_to_watch_is_better": True,
  62. }
  63. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  64. def test_train_with_external_scheduler(self):
  65. trainer = Trainer("external_scheduler_test")
  66. dataloader = classification_test_dataloader(batch_size=10)
  67. lr = 0.3
  68. model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
  69. optimizer = SGD(params=model.parameters(), lr=lr)
  70. lr_scheduler = MultiStepLR(optimizer=optimizer, milestones=[1, 2], gamma=0.1)
  71. phase_callbacks = [LRSchedulerCallback(lr_scheduler, Phase.TRAIN_EPOCH_END)]
  72. train_params = {
  73. "max_epochs": 2,
  74. "phase_callbacks": phase_callbacks,
  75. "lr_warmup_epochs": 0,
  76. "loss": "CrossEntropyLoss",
  77. "optimizer": optimizer,
  78. "criterion_params": {},
  79. "train_metrics_list": [Accuracy(), Top5()],
  80. "valid_metrics_list": [Accuracy(), Top5()],
  81. "metric_to_watch": "Accuracy",
  82. "greater_metric_to_watch_is_better": True,
  83. }
  84. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  85. self.assertTrue(lr_scheduler.get_last_lr()[0] == lr * 0.1 * 0.1)
  86. def test_train_with_external_scheduler_class(self):
  87. trainer = Trainer("external_scheduler_test")
  88. dataloader = classification_test_dataloader(batch_size=10)
  89. model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
  90. optimizer = SGD # a class - not an instance
  91. train_params = {
  92. "max_epochs": 2,
  93. "lr_warmup_epochs": 0,
  94. "initial_lr": 0.1,
  95. "loss": "CrossEntropyLoss",
  96. "optimizer": optimizer,
  97. "criterion_params": {},
  98. "train_metrics_list": [Accuracy(), Top5()],
  99. "valid_metrics_list": [Accuracy(), Top5()],
  100. "metric_to_watch": "Accuracy",
  101. "greater_metric_to_watch_is_better": True,
  102. }
  103. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  104. def test_train_with_reduce_on_plateau(self):
  105. trainer = Trainer("external_reduce_on_plateau_scheduler_test")
  106. dataloader = classification_test_dataloader(batch_size=10)
  107. lr = 0.3
  108. model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
  109. optimizer = SGD(params=model.parameters(), lr=lr)
  110. lr_scheduler = ReduceLROnPlateau(optimizer=optimizer, patience=0)
  111. phase_callbacks = [LRSchedulerCallback(lr_scheduler, Phase.VALIDATION_EPOCH_END, "ToyTestClassificationMetric")]
  112. train_params = {
  113. "max_epochs": 2,
  114. "phase_callbacks": phase_callbacks,
  115. "lr_warmup_epochs": 0,
  116. "loss": "CrossEntropyLoss",
  117. "optimizer": optimizer,
  118. "criterion_params": {},
  119. "train_metrics_list": [Accuracy(), Top5()],
  120. "valid_metrics_list": [Accuracy(), Top5(), ToyTestClassificationMetric()],
  121. "metric_to_watch": "Accuracy",
  122. "greater_metric_to_watch_is_better": True,
  123. }
  124. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  125. self.assertTrue(lr_scheduler._last_lr[0] == lr * 0.1)
  126. def test_train_with_external_metric(self):
  127. trainer = Trainer("external_metric_test")
  128. dataloader = classification_test_dataloader(batch_size=10)
  129. model = models.get(Models.RESNET18, arch_params={"num_classes": 5})
  130. train_params = {
  131. "max_epochs": 2,
  132. "lr_updates": [1],
  133. "lr_decay_factor": 0.1,
  134. "lr_mode": "StepLRScheduler",
  135. "lr_warmup_epochs": 0,
  136. "initial_lr": 0.1,
  137. "loss": "CrossEntropyLoss",
  138. "optimizer": "SGD",
  139. "criterion_params": {},
  140. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  141. "train_metrics_list": [F1Score()],
  142. "valid_metrics_list": [F1Score()],
  143. "metric_to_watch": "F1Score",
  144. "greater_metric_to_watch_is_better": True,
  145. }
  146. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  147. def test_train_with_external_dataloaders(self):
  148. trainer = Trainer("external_data_loader_test")
  149. batch_size = 5
  150. trainset = torch.utils.data.TensorDataset(torch.Tensor(np.random.random((10, 3, 32, 32))), torch.LongTensor(np.zeros((10))))
  151. valset = torch.utils.data.TensorDataset(torch.Tensor(np.random.random((10, 3, 32, 32))), torch.LongTensor(np.zeros((10))))
  152. train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size)
  153. val_loader = torch.utils.data.DataLoader(valset, batch_size=batch_size)
  154. model = models.get(Models.RESNET18, num_classes=5)
  155. train_params = {
  156. "max_epochs": 2,
  157. "lr_updates": [1],
  158. "lr_decay_factor": 0.1,
  159. "lr_mode": "StepLRScheduler",
  160. "lr_warmup_epochs": 0,
  161. "initial_lr": 0.1,
  162. "loss": "CrossEntropyLoss",
  163. "optimizer": "SGD",
  164. "criterion_params": {},
  165. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  166. "train_metrics_list": [F1Score()],
  167. "valid_metrics_list": [F1Score()],
  168. "metric_to_watch": "F1Score",
  169. "greater_metric_to_watch_is_better": True,
  170. }
  171. trainer.train(model=model, training_params=train_params, train_loader=train_loader, valid_loader=val_loader)
  172. def test_train_with_multiple_test_loaders(self):
  173. register_hydra_resolvers()
  174. GlobalHydra.instance().clear()
  175. configs_dir = os.path.join(os.path.dirname(__file__), "configs")
  176. with hydra.initialize_config_dir(config_dir=normalize_path(configs_dir), version_base="1.2"):
  177. cfg = hydra.compose(config_name="cifar10_multiple_test")
  178. cfg.training_hyperparams.max_epochs = 1
  179. Trainer.train_from_config(cfg)
  180. if __name__ == "__main__":
  181. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...