Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

segmentation_transforms_test.py 10 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  1. import unittest
  2. from pathlib import Path
  3. import numpy as np
  4. import torch
  5. from torch.utils.data import DataLoader
  6. from torchvision.transforms import Compose, ToTensor
  7. from super_gradients.training.datasets import CoCoSegmentationDataSet
  8. from super_gradients.training.transforms.transforms import SegRescale, SegRandomRescale, SegCropImageAndMask, SegPadShortToCropSize
  9. from PIL import Image
  10. class SegmentationTransformsTest(unittest.TestCase):
  11. def setUp(self) -> None:
  12. self.default_image_value = 0
  13. self.default_mask_value = 0
  14. def create_sample(self, size):
  15. sample = {
  16. "image": Image.new(mode="RGB", size=size, color=self.default_image_value),
  17. "mask": Image.new(mode="L", size=size, color=self.default_mask_value),
  18. }
  19. return sample
  20. def test_rescale_with_scale_factor(self):
  21. # test raise exception for negative and zero scale factor
  22. kwargs = {"scale_factor": -2}
  23. self.failUnlessRaises(ValueError, SegRescale, **kwargs)
  24. kwargs = {"scale_factor": 0}
  25. self.failUnlessRaises(ValueError, SegRescale, **kwargs)
  26. # test scale down
  27. sample = self.create_sample((1024, 512))
  28. rescale_scale05 = SegRescale(scale_factor=0.5)
  29. out = rescale_scale05(sample)
  30. self.assertEqual((512, 256), out["image"].size)
  31. # test scale up
  32. sample = self.create_sample((1024, 512))
  33. rescale_scale2 = SegRescale(scale_factor=2.0)
  34. out = rescale_scale2(sample)
  35. self.assertEqual((2048, 1024), out["image"].size)
  36. # test scale_factor is stronger than other params
  37. sample = self.create_sample((1024, 512))
  38. rescale_scale05 = SegRescale(scale_factor=0.5, short_size=300, long_size=600)
  39. out = rescale_scale05(sample)
  40. self.assertEqual((512, 256), out["image"].size)
  41. def test_rescale_with_short_size(self):
  42. # test raise exception for negative and zero short_size
  43. kwargs = {"short_size": 0}
  44. self.failUnlessRaises(ValueError, SegRescale, **kwargs)
  45. kwargs = {"short_size": -200}
  46. self.failUnlessRaises(ValueError, SegRescale, **kwargs)
  47. # test scale by short size
  48. sample = self.create_sample((1024, 512))
  49. rescale_short256 = SegRescale(short_size=256)
  50. out = rescale_short256(sample)
  51. self.assertEqual((512, 256), out["image"].size)
  52. # test short_size is stronger than long_size
  53. sample = self.create_sample((1024, 512))
  54. rescale_scale05 = SegRescale(short_size=301, long_size=301)
  55. out = rescale_scale05(sample)
  56. self.assertEqual((602, 301), out["image"].size)
  57. def test_rescale_with_long_size(self):
  58. # test raise exception for negative and zero short_size
  59. kwargs = {"long_size": 0}
  60. self.failUnlessRaises(ValueError, SegRescale, **kwargs)
  61. kwargs = {"long_size": -200}
  62. self.failUnlessRaises(ValueError, SegRescale, **kwargs)
  63. # test scale by long size
  64. sample = self.create_sample((1024, 512))
  65. rescale_long256 = SegRescale(long_size=256)
  66. out = rescale_long256(sample)
  67. self.assertEqual((256, 128), out["image"].size)
  68. def test_random_rescale(self):
  69. # test passing scales argument
  70. random_rescale = SegRandomRescale(scales=0.1)
  71. self.assertEqual((0.1, 1), random_rescale.scales)
  72. random_rescale = SegRandomRescale(scales=1.2)
  73. self.assertEqual((1, 1.2), random_rescale.scales)
  74. random_rescale = SegRandomRescale(scales=(0.5, 1.2))
  75. self.assertEqual((0.5, 1.2), random_rescale.scales)
  76. kwargs = {"scales": -0.5}
  77. self.failUnlessRaises(ValueError, SegRandomRescale, **kwargs)
  78. # test random rescale
  79. size = [1024, 512]
  80. scales = [0.8, 1.2]
  81. sample = self.create_sample(size)
  82. random_rescale = SegRandomRescale(scales=(0.8, 1.2))
  83. min_size = [scales[0] * s for s in size]
  84. max_size = [scales[1] * s for s in size]
  85. out = random_rescale(sample)
  86. for i in range(len(min_size)):
  87. self.assertGreaterEqual(out["image"].size[i], min_size[i])
  88. self.assertLessEqual(out["image"].size[i], max_size[i])
  89. def test_padding(self):
  90. # test arguments are valid
  91. pad = SegPadShortToCropSize(crop_size=200)
  92. self.assertEqual((200, 200), pad.crop_size)
  93. kwargs = {"crop_size": (0, 200)}
  94. self.failUnlessRaises(ValueError, SegPadShortToCropSize, **kwargs)
  95. kwargs = {"crop_size": 200, "fill_image": 256}
  96. self.failUnlessRaises(ValueError, SegPadShortToCropSize, **kwargs)
  97. kwargs = {"crop_size": 200, "fill_mask": 256}
  98. self.failUnlessRaises(ValueError, SegPadShortToCropSize, **kwargs)
  99. in_size = (512, 256)
  100. out_size = (512, 512)
  101. sample = self.create_sample(in_size)
  102. padding = SegPadShortToCropSize(crop_size=out_size)
  103. out = padding(sample)
  104. self.assertEqual(out_size, out["image"].size)
  105. # pad to odd size
  106. out_size = (512, 501)
  107. sample = self.create_sample(in_size)
  108. padding = SegPadShortToCropSize(crop_size=out_size)
  109. out = padding(sample)
  110. self.assertEqual(out_size, out["image"].size)
  111. def test_padding_fill_values(self):
  112. image_to_tensor = ToTensor()
  113. # test fill mask
  114. in_size = (256, 128)
  115. out_size = (256, 256)
  116. # padding fill values
  117. fill_mask_value = 32
  118. fill_image_value = 127
  119. sample = self.create_sample(in_size)
  120. padding = SegPadShortToCropSize(crop_size=out_size, fill_mask=fill_mask_value, fill_image=fill_image_value)
  121. out = padding(sample)
  122. out_mask = torch.from_numpy(np.array(out["mask"]))
  123. # same as SegmentationDataset transform just without normalization to easily keep track of values.
  124. out_image = image_to_tensor(out["image"])
  125. # test transformed mask values
  126. original_values = out_mask[128 // 2 : -128 // 2].unique().tolist()
  127. pad_values = torch.cat([out_mask[: 128 // 2], out_mask[-128 // 2 :]], dim=0).unique().tolist()
  128. self.assertEqual(len(original_values), 1)
  129. self.assertEqual(original_values[0], self.default_mask_value)
  130. self.assertEqual(len(pad_values), 1)
  131. self.assertEqual(pad_values[0], fill_mask_value)
  132. # test transformed image values
  133. original_values = out_image[:, 128 // 2 : -128 // 2].unique().tolist()
  134. pad_values = torch.cat([out_image[:, : 128 // 2], out_image[:, -128 // 2 :]], dim=1).unique().tolist()
  135. self.assertEqual(len(original_values), 1)
  136. self.assertEqual(original_values[0], self.default_image_value)
  137. self.assertEqual(len(pad_values), 1)
  138. self.assertAlmostEqual(pad_values[0], fill_image_value / 255, delta=1e-5)
  139. def test_crop(self):
  140. # test arguments are valid
  141. pad = SegCropImageAndMask(crop_size=200, mode="center")
  142. self.assertEqual((200, 200), pad.crop_size)
  143. kwargs = {"crop_size": (0, 200), "mode": "random"}
  144. self.failUnlessRaises(ValueError, SegCropImageAndMask, **kwargs)
  145. # test unsupported mode
  146. kwargs = {"crop_size": (200, 200), "mode": "deci"}
  147. self.failUnlessRaises(ValueError, SegCropImageAndMask, **kwargs)
  148. in_size = (1024, 512)
  149. out_size = (128, 256)
  150. crop_center = SegCropImageAndMask(crop_size=out_size, mode="center")
  151. crop_random = SegCropImageAndMask(crop_size=out_size, mode="random")
  152. sample = self.create_sample(in_size)
  153. out_center = crop_center(sample)
  154. sample = self.create_sample(in_size)
  155. out_random = crop_random(sample)
  156. self.assertEqual(out_size, out_center["image"].size)
  157. self.assertEqual(out_size, out_random["image"].size)
  158. def test_rescale_padding(self):
  159. in_size = (1024, 512)
  160. out_size = (512, 512)
  161. sample = self.create_sample(in_size)
  162. transform = Compose([SegRescale(long_size=out_size[0]), SegPadShortToCropSize(crop_size=out_size)]) # rescale to (512, 256) # pad to (512, 512)
  163. out = transform(sample)
  164. self.assertEqual(out_size, out["image"].size)
  165. def test_random_rescale_padding_random_crop(self):
  166. img_size = (1024, 512)
  167. crop_size = (256, 128)
  168. sample = self.create_sample(img_size)
  169. transform = Compose(
  170. [SegRandomRescale(scales=(0.1, 2.0)), SegPadShortToCropSize(crop_size=crop_size), SegCropImageAndMask(crop_size=crop_size, mode="random")]
  171. )
  172. out = transform(sample)
  173. self.assertEqual(crop_size, out["image"].size)
  174. def test_segtotensor_loss_integration(self):
  175. mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
  176. dataset = CoCoSegmentationDataSet(
  177. root_dir=mini_coco_data_dir,
  178. list_file="instances_val2017.json",
  179. samples_sub_directory="images/val2017",
  180. targets_sub_directory="annotations",
  181. transforms=[
  182. {"SegRescale": {"short_size": 512}},
  183. {
  184. "SegCropImageAndMask": {"crop_size": 256, "mode": "center"},
  185. },
  186. {"SegConvertToTensor": {"mask_output_dtype": torch.float32}},
  187. ],
  188. )
  189. dataloader = DataLoader(dataset, batch_size=4)
  190. batch = next(iter(dataloader))
  191. pred = torch.randn(batch[1].shape)
  192. loss = torch.nn.BCEWithLogitsLoss()
  193. loss(pred, batch[1])
  194. def test_segtotensor_with_dummy_dim_integration(self):
  195. mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
  196. dataset = CoCoSegmentationDataSet(
  197. root_dir=mini_coco_data_dir,
  198. list_file="instances_val2017.json",
  199. samples_sub_directory="images/val2017",
  200. targets_sub_directory="annotations",
  201. transforms=[
  202. {"SegRescale": {"short_size": 512}},
  203. {
  204. "SegCropImageAndMask": {"crop_size": 256, "mode": "center"},
  205. },
  206. {"SegConvertToTensor": {"mask_output_dtype": "float32", "add_mask_dummy_dim": True}},
  207. ],
  208. dataset_classes_inclusion_tuples_list=[(1, "person")],
  209. )
  210. dataloader = DataLoader(dataset, batch_size=4)
  211. batch = next(iter(dataloader))
  212. pred = torch.sigmoid(torch.randn((4, 1, 256, 256)))
  213. loss = torch.nn.BCELoss()
  214. loss(pred, batch[1])
  215. if __name__ == "__main__":
  216. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...