Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

multiple_ignore_indices_segmentation_metrics_test.py 2.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  1. import unittest
  2. import torch
  3. from super_gradients.training.metrics import IoU, PixelAccuracy, Dice
  4. class TestSegmentationMetricsMultipleIgnored(unittest.TestCase):
  5. def test_iou_with_multiple_ignored_classes_and_absent_score(self):
  6. metric_multi_ignored = IoU(num_classes=5, ignore_index=[3, 1, 2])
  7. target_multi_ignored = torch.tensor([[3, 1, 2, 4, 4, 4]])
  8. pred = torch.zeros((1, 5, 6))
  9. pred[:, 4] = 1
  10. # preds after onehot -> [4,4,4,4,4,4]
  11. # (1 + 0)/2 : 1.0 for class 4 score and 0 for absent score for class 0
  12. self.assertEqual(metric_multi_ignored(pred, target_multi_ignored), 0.5)
  13. def test_iou_with_multiple_ignored_classes_no_absent_score(self):
  14. metric_multi_ignored = IoU(num_classes=5, ignore_index=[3, 1, 2])
  15. target_multi_ignored = torch.tensor([[3, 1, 2, 0, 4, 4]])
  16. pred = torch.zeros((1, 5, 6))
  17. pred[:, 4] = 1
  18. pred[0, 0, 3] = 2
  19. # preds after onehot -> [4,4,4,0,4,4]
  20. # (1 + 1)/2 : 1.0 for class 4 score and 1 for class 0
  21. self.assertEqual(metric_multi_ignored(pred, target_multi_ignored), 1)
  22. def test_dice_with_multiple_ignored_classes_and_absent_score(self):
  23. metric_multi_ignored = Dice(num_classes=5, ignore_index=[3, 1, 2])
  24. target_multi_ignored = torch.tensor([[3, 1, 2, 4, 4, 4]])
  25. pred = torch.zeros((1, 5, 6))
  26. pred[:, 4] = 1
  27. self.assertEqual(metric_multi_ignored(pred, target_multi_ignored), 0.5)
  28. def test_dice_with_multiple_ignored_classes_no_absent_score(self):
  29. metric_multi_ignored = Dice(num_classes=5, ignore_index=[3, 1, 2])
  30. target_multi_ignored = torch.tensor([[3, 1, 2, 0, 4, 4]])
  31. pred = torch.zeros((1, 5, 6))
  32. pred[:, 4] = 1
  33. pred[0, 0, 3] = 2
  34. self.assertEqual(metric_multi_ignored(pred, target_multi_ignored), 1.0)
  35. def test_pixelaccuracy_with_multiple_ignored_classes(self):
  36. metric_multi_ignored = PixelAccuracy(ignore_label=[3, 1, 2])
  37. target_multi_ignored = torch.tensor([[3, 1, 2, 4, 4, 4]])
  38. pred = torch.zeros((1, 5, 6))
  39. pred[:, 4] = 1
  40. self.assertEqual(metric_multi_ignored(pred, target_multi_ignored), 1.0)
  41. if __name__ == "__main__":
  42. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...