1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
- import unittest
- import torch
- from super_gradients import Trainer
- from super_gradients.common.decorators.factory_decorator import resolve_param
- from super_gradients.common.factories.activations_type_factory import ActivationsTypeFactory
- from super_gradients.common.object_names import Models
- from super_gradients.training import models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.losses import CrossEntropyLoss
- from super_gradients.training.metrics import Accuracy, Top5
- from torch import nn
- class FactoriesTest(unittest.TestCase):
- def test_training_with_factories(self):
- trainer = Trainer("test_train_with_factories")
- net = models.get(Models.RESNET18, num_classes=5)
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "CrossEntropyLoss",
- "optimizer": "torch.optim.ASGD", # use an optimizer by factory
- "criterion_params": {},
- "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
- "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
- "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
- self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
- self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
- self.assertIsInstance(trainer.optimizer, torch.optim.ASGD)
- def test_training_with_factories_with_typos(self):
- trainer = Trainer("test_train_with_factories_with_typos")
- net = models.get("Resnet___18", num_classes=5)
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "crossEnt_ropy",
- "optimizer": "AdAm_", # use an optimizer by factory
- "criterion_params": {},
- "train_metrics_list": ["accur_acy", "Top_5"], # use a metric by factory
- "valid_metrics_list": ["aCCuracy", "Top5"], # use a metric by factory
- "metric_to_watch": "Accurac_Y",
- "greater_metric_to_watch_is_better": True,
- }
- trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
- self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
- self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
- self.assertIsInstance(trainer.optimizer, torch.optim.Adam)
- self.assertIsInstance(trainer.criterion, CrossEntropyLoss)
- def test_activations_factory(self):
- class DummyModel(nn.Module):
- @resolve_param("activation_in_head", ActivationsTypeFactory())
- def __init__(self, activation_in_head):
- super().__init__()
- self.activation_in_head = activation_in_head()
- model = DummyModel(activation_in_head="leaky_relu")
- self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
- def test_activations_factory_input_is_type(self):
- class DummyModel(nn.Module):
- @resolve_param("activation_in_head", ActivationsTypeFactory())
- def __init__(self, activation_in_head):
- super().__init__()
- self.activation_in_head = activation_in_head()
- model = DummyModel(activation_in_head=nn.LeakyReLU)
- self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
- if __name__ == "__main__":
- unittest.main()
|