Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

detection_dataset_test.py 10 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  1. import unittest
  2. from unittest.mock import patch, mock_open
  3. from pathlib import Path
  4. from typing import Dict
  5. import numpy as np
  6. from torch.utils.data import DataLoader
  7. from super_gradients import Trainer
  8. from super_gradients.training import models, dataloaders
  9. from super_gradients.training.dataloaders import coco2017_train_yolo_nas, get_data_loader
  10. from super_gradients.training.datasets import COCODetectionDataset, YoloDarknetFormatDetectionDataset
  11. from super_gradients.training.datasets.data_formats.default_formats import LABEL_CXCYWH
  12. from super_gradients.training.datasets.datasets_conf import COCO_DETECTION_CLASSES_LIST
  13. from super_gradients.common.exceptions.dataset_exceptions import DatasetValidationException, ParameterMismatchException
  14. from super_gradients.training.metrics import DetectionMetrics
  15. from super_gradients.training.models import YoloXPostPredictionCallback
  16. from super_gradients.training.transforms import DetectionMosaic, DetectionTargetsFormatTransform, DetectionPaddedRescale
  17. from super_gradients.training.utils.collate_fn import DetectionCollateFN, CrowdDetectionCollateFN
  18. class DummyCOCODetectionDatasetInheritor(COCODetectionDataset):
  19. def __init__(self, json_file: str, subdir: str, dummy_field: int, *args, **kwargs):
  20. super(DummyCOCODetectionDatasetInheritor, self).__init__(json_file=json_file, subdir=subdir, *args, **kwargs)
  21. self.dummy_field = dummy_field
  22. def dummy_coco2017_inheritor_train_yolo_nas(dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
  23. return get_data_loader(
  24. config_name="coco_detection_yolo_nas_dataset_params",
  25. dataset_cls=DummyCOCODetectionDatasetInheritor,
  26. train=True,
  27. dataset_params=dataset_params,
  28. dataloader_params=dataloader_params,
  29. )
  30. class DetectionDatasetTest(unittest.TestCase):
  31. def setUp(self) -> None:
  32. self.mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
  33. def test_normal_coco_dataset_creation(self):
  34. train_dataset_params = {
  35. "data_dir": self.mini_coco_data_dir,
  36. "subdir": "images/train2017",
  37. "json_file": "instances_train2017.json",
  38. "cache": False,
  39. "input_dim": [512, 512],
  40. }
  41. COCODetectionDataset(**train_dataset_params)
  42. def test_coco_dataset_creation_with_wrong_classes(self):
  43. train_dataset_params = {
  44. "data_dir": self.mini_coco_data_dir,
  45. "subdir": "images/train2017",
  46. "json_file": "instances_train2017.json",
  47. "cache": False,
  48. "input_dim": [512, 512],
  49. "all_classes_list": ["One", "Two", "Three"],
  50. }
  51. with self.assertRaises(DatasetValidationException):
  52. COCODetectionDataset(**train_dataset_params)
  53. def test_coco_dataset_creation_with_subset_classes(self):
  54. train_dataset_params = {
  55. "data_dir": self.mini_coco_data_dir,
  56. "subdir": "images/train2017",
  57. "json_file": "instances_train2017.json",
  58. "cache": False,
  59. "input_dim": [512, 512],
  60. "all_classes_list": ["car", "person", "bird"],
  61. }
  62. with self.assertRaises(ParameterMismatchException):
  63. COCODetectionDataset(**train_dataset_params)
  64. def test_coco_detection_dataset_override_image_size(self):
  65. train_dataset_params = {
  66. "data_dir": self.mini_coco_data_dir,
  67. "input_dim": [512, 512],
  68. }
  69. train_dataloader_params = {"num_workers": 0}
  70. dataloader = coco2017_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  71. batch = next(iter(dataloader))
  72. print(batch[0].shape)
  73. self.assertEqual(batch[0].shape[2], 512)
  74. self.assertEqual(batch[0].shape[3], 512)
  75. def test_coco_detection_dataset_override_image_size_single_scalar(self):
  76. train_dataset_params = {
  77. "data_dir": self.mini_coco_data_dir,
  78. "input_dim": 384,
  79. }
  80. train_dataloader_params = {"num_workers": 0}
  81. dataloader = coco2017_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  82. batch = next(iter(dataloader))
  83. print(batch[0].shape)
  84. self.assertEqual(batch[0].shape[2], 384)
  85. self.assertEqual(batch[0].shape[3], 384)
  86. def test_coco_detection_dataset_override_with_objects(self):
  87. train_dataset_params = {
  88. "data_dir": self.mini_coco_data_dir,
  89. "input_dim": 384,
  90. "transforms": [
  91. DetectionMosaic(input_dim=384),
  92. DetectionPaddedRescale(input_dim=384, max_targets=10),
  93. DetectionTargetsFormatTransform(max_targets=10, output_format=LABEL_CXCYWH),
  94. ],
  95. }
  96. train_dataloader_params = {"num_workers": 0}
  97. dataloader = coco2017_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  98. batch = next(iter(dataloader))
  99. print(batch[0].shape)
  100. self.assertEqual(batch[0].shape[2], 384)
  101. self.assertEqual(batch[0].shape[3], 384)
  102. def test_coco_detection_dataset_override_with_new_entries(self):
  103. train_dataset_params = {
  104. "data_dir": self.mini_coco_data_dir,
  105. "input_dim": 384,
  106. "transforms": [
  107. DetectionMosaic(input_dim=384),
  108. DetectionPaddedRescale(input_dim=384, max_targets=10),
  109. DetectionTargetsFormatTransform(max_targets=10, output_format=LABEL_CXCYWH),
  110. ],
  111. "dummy_field": 10,
  112. }
  113. train_dataloader_params = {"num_workers": 0}
  114. dataloader = dummy_coco2017_inheritor_train_yolo_nas(dataset_params=train_dataset_params, dataloader_params=train_dataloader_params)
  115. batch = next(iter(dataloader))
  116. print(batch[0].shape)
  117. self.assertEqual(batch[0].shape[2], 384)
  118. self.assertEqual(batch[0].shape[3], 384)
  119. self.assertEqual(dataloader.dataset.dummy_field, 10)
  120. def test_coco_detection_metrics_with_classwise_ap(self):
  121. model = models.get("yolox_s", pretrained_weights="coco", num_classes=80)
  122. train_dataset_params = {
  123. "data_dir": self.mini_coco_data_dir,
  124. "subdir": "images/train2017",
  125. "json_file": "instances_train2017.json",
  126. "cache": False,
  127. "input_dim": [329, 320],
  128. "transforms": [
  129. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  130. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  131. ],
  132. "with_crowd": False,
  133. }
  134. val_dataset_params = {
  135. "data_dir": self.mini_coco_data_dir,
  136. "subdir": "images/val2017",
  137. "json_file": "instances_val2017.json",
  138. "cache": False,
  139. "input_dim": [329, 320],
  140. "transforms": [
  141. {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
  142. {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
  143. ],
  144. }
  145. trainset = COCODetectionDataset(**train_dataset_params)
  146. train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN(), "batch_size": 16})
  147. valset = COCODetectionDataset(**val_dataset_params)
  148. valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN(), "batch_size": 16})
  149. trainer = Trainer("test_detection_metrics_with_classwise_ap")
  150. detection_train_params_yolox = {
  151. "max_epochs": 5,
  152. "lr_mode": "CosineLRScheduler",
  153. "cosine_final_lr_ratio": 0.05,
  154. "warmup_bias_lr": 0.0,
  155. "warmup_momentum": 0.9,
  156. "initial_lr": 0.02,
  157. "loss": "YoloXDetectionLoss",
  158. "mixed_precision": False,
  159. "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
  160. "train_metrics_list": [],
  161. "valid_metrics_list": [
  162. DetectionMetrics(
  163. post_prediction_callback=YoloXPostPredictionCallback(),
  164. normalize_targets=True,
  165. num_cls=80,
  166. include_classwise_ap=True,
  167. class_names=COCO_DETECTION_CLASSES_LIST,
  168. calc_best_score_thresholds=False,
  169. )
  170. ],
  171. "metric_to_watch": "AP@0.50:0.95_car",
  172. "greater_metric_to_watch_is_better": True,
  173. "average_best_models": False,
  174. }
  175. trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
  176. class TestParseYoloLabelFile(unittest.TestCase):
  177. def setUp(self):
  178. self.num_classes = 3
  179. self.sample_data_valid = "0 0.5 0.5 0.1 0.1\n1 0.6 0.6 0.2 0.2"
  180. self.sample_data_invalid_format = "0 0.5\n1 0.6 0.6 0.2 0.2"
  181. self.sample_data_invalid_class = "-1 0.5 0.5 0.1 0.1\n3 0.6 0.6 0.2 0.2"
  182. def test_valid_label(self):
  183. with patch("builtins.open", mock_open(read_data=self.sample_data_valid)):
  184. labels, invalid_labels = YoloDarknetFormatDetectionDataset._parse_yolo_label_file("mock_path", num_classes=3)
  185. np.testing.assert_array_equal(labels, np.array([[0, 0.5, 0.5, 0.1, 0.1], [1, 0.6, 0.6, 0.2, 0.2]]))
  186. self.assertEqual(invalid_labels, [])
  187. def test_invalid_format(self):
  188. with patch("builtins.open", mock_open(read_data=self.sample_data_invalid_format)):
  189. labels, invalid_labels = YoloDarknetFormatDetectionDataset._parse_yolo_label_file("mock_path", num_classes=3)
  190. np.testing.assert_array_equal(labels, np.array([[1, 0.6, 0.6, 0.2, 0.2]]))
  191. self.assertEqual(invalid_labels, ["0 0.5\n"])
  192. def test_invalid_class(self):
  193. with patch("builtins.open", mock_open(read_data=self.sample_data_invalid_class)):
  194. labels, invalid_labels = YoloDarknetFormatDetectionDataset._parse_yolo_label_file("mock_path", num_classes=3)
  195. self.assertEqual(len(labels), 0)
  196. self.assertEqual(invalid_labels, ["-1 0.5 0.5 0.1 0.1\n", "3 0.6 0.6 0.2 0.2"])
  197. if __name__ == "__main__":
  198. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...