1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
- import unittest
- import super_gradients
- from super_gradients.training.datasets import PascalVOCDetectionDataset, COCODetectionDataset
- from super_gradients.training.transforms import DetectionMosaic, DetectionPaddedRescale, DetectionTargetsFormatTransform
- from super_gradients.training.utils.detection_utils import DetectionTargetsFormat
- from super_gradients.training.exceptions.dataset_exceptions import EmptyDatasetException
- class DatasetIntegrationTest(unittest.TestCase):
- def setUp(self) -> None:
- super_gradients.init_trainer()
- self.batch_size = 64
- self.max_samples_per_plot = 16
- self.n_plot = 1
- transforms = [DetectionMosaic(input_dim=(640, 640), prob=0.8),
- DetectionPaddedRescale(input_dim=(640, 640), max_targets=120),
- DetectionTargetsFormatTransform(output_format=DetectionTargetsFormat.XYXY_LABEL)]
- self.pascal_class_inclusion_lists = [['aeroplane', 'bicycle'],
- ['bird', 'boat', 'bottle', 'bus'],
- ['pottedplant'],
- ['person']]
- self.pascal_base_config = dict(data_dir='/home/louis.dupont/data/pascal_unified_coco_format/',
- images_sub_directory='images/train2012/',
- input_dim=(640, 640),
- transforms=transforms)
- self.coco_class_inclusion_lists = [['airplane', 'bicycle'],
- ['bird', 'boat', 'bottle', 'bus'],
- ['potted plant'],
- ['person']]
- self.dataset_coco_base_config = dict(data_dir="/data/coco",
- subdir="images/val2017",
- json_file="instances_val2017.json",
- input_dim=(640, 640),
- transforms=transforms,)
- def test_multiple_pascal_dataset_subclass_before_transforms(self):
- """Run test_pascal_dataset_subclass on multiple inclusion lists"""
- for class_inclusion_list in self.pascal_class_inclusion_lists:
- dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list,
- max_num_samples=self.max_samples_per_plot * self.n_plot,
- **self.pascal_base_config)
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
- def test_multiple_pascal_dataset_subclass_after_transforms(self):
- """Run test_pascal_dataset_subclass on multiple inclusion lists"""
- for class_inclusion_list in self.pascal_class_inclusion_lists:
- dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list,
- max_num_samples=self.max_samples_per_plot * self.n_plot,
- **self.pascal_base_config)
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
- def test_multiple_coco_dataset_subclass_before_transforms(self):
- """Check subclass on multiple inclusions before transform"""
- for class_inclusion_list in self.coco_class_inclusion_lists:
- dataset = COCODetectionDataset(class_inclusion_list=class_inclusion_list,
- max_num_samples=self.max_samples_per_plot * self.n_plot,
- **self.dataset_coco_base_config)
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
- def test_multiple_coco_dataset_subclass_after_transforms(self):
- """Check subclass on multiple inclusions after transform"""
- for class_inclusion_list in self.coco_class_inclusion_lists:
- dataset = COCODetectionDataset(class_inclusion_list=class_inclusion_list,
- max_num_samples=self.max_samples_per_plot * self.n_plot,
- **self.dataset_coco_base_config)
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
- def test_subclass_non_existing_class(self):
- """Check that EmptyDatasetException is raised when unknown label."""
- with self.assertRaises(ValueError):
- PascalVOCDetectionDataset(class_inclusion_list=["new_class"], **self.pascal_base_config)
- def test_sub_sampling_dataset(self):
- """Check that sub sampling works."""
- full_dataset = PascalVOCDetectionDataset(**self.pascal_base_config)
- with self.assertRaises(EmptyDatasetException):
- PascalVOCDetectionDataset(max_num_samples=0, **self.pascal_base_config)
- for max_num_samples in [1, 10, 1000, 1_000_000]:
- sampled_dataset = PascalVOCDetectionDataset(max_num_samples=max_num_samples, **self.pascal_base_config)
- self.assertEqual(len(sampled_dataset), min(max_num_samples, len(full_dataset)))
- if __name__ == '__main__':
- unittest.main()
|