Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

detection_dataset_test.py 5.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  1. import unittest
  2. import super_gradients
  3. from super_gradients.training.datasets import PascalVOCDetectionDataset, COCODetectionDataset
  4. from super_gradients.training.transforms import DetectionMosaic, DetectionPaddedRescale, DetectionTargetsFormatTransform
  5. from super_gradients.training.utils.detection_utils import DetectionTargetsFormat
  6. from super_gradients.training.exceptions.dataset_exceptions import EmptyDatasetException
  7. class DatasetIntegrationTest(unittest.TestCase):
  8. def setUp(self) -> None:
  9. super_gradients.init_trainer()
  10. self.batch_size = 64
  11. self.max_samples_per_plot = 16
  12. self.n_plot = 1
  13. transforms = [DetectionMosaic(input_dim=(640, 640), prob=0.8),
  14. DetectionPaddedRescale(input_dim=(640, 640), max_targets=120),
  15. DetectionTargetsFormatTransform(output_format=DetectionTargetsFormat.XYXY_LABEL)]
  16. self.pascal_class_inclusion_lists = [['aeroplane', 'bicycle'],
  17. ['bird', 'boat', 'bottle', 'bus'],
  18. ['pottedplant'],
  19. ['person']]
  20. self.pascal_base_config = dict(data_dir='/home/louis.dupont/data/pascal_unified_coco_format/',
  21. images_sub_directory='images/train2012/',
  22. input_dim=(640, 640),
  23. transforms=transforms)
  24. self.coco_class_inclusion_lists = [['airplane', 'bicycle'],
  25. ['bird', 'boat', 'bottle', 'bus'],
  26. ['potted plant'],
  27. ['person']]
  28. self.dataset_coco_base_config = dict(data_dir="/data/coco",
  29. subdir="images/val2017",
  30. json_file="instances_val2017.json",
  31. input_dim=(640, 640),
  32. transforms=transforms,)
  33. def test_multiple_pascal_dataset_subclass_before_transforms(self):
  34. """Run test_pascal_dataset_subclass on multiple inclusion lists"""
  35. for class_inclusion_list in self.pascal_class_inclusion_lists:
  36. dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list,
  37. max_num_samples=self.max_samples_per_plot * self.n_plot,
  38. **self.pascal_base_config)
  39. dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
  40. def test_multiple_pascal_dataset_subclass_after_transforms(self):
  41. """Run test_pascal_dataset_subclass on multiple inclusion lists"""
  42. for class_inclusion_list in self.pascal_class_inclusion_lists:
  43. dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list,
  44. max_num_samples=self.max_samples_per_plot * self.n_plot,
  45. **self.pascal_base_config)
  46. dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
  47. def test_multiple_coco_dataset_subclass_before_transforms(self):
  48. """Check subclass on multiple inclusions before transform"""
  49. for class_inclusion_list in self.coco_class_inclusion_lists:
  50. dataset = COCODetectionDataset(class_inclusion_list=class_inclusion_list,
  51. max_num_samples=self.max_samples_per_plot * self.n_plot,
  52. **self.dataset_coco_base_config)
  53. dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
  54. def test_multiple_coco_dataset_subclass_after_transforms(self):
  55. """Check subclass on multiple inclusions after transform"""
  56. for class_inclusion_list in self.coco_class_inclusion_lists:
  57. dataset = COCODetectionDataset(class_inclusion_list=class_inclusion_list,
  58. max_num_samples=self.max_samples_per_plot * self.n_plot,
  59. **self.dataset_coco_base_config)
  60. dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
  61. def test_subclass_non_existing_class(self):
  62. """Check that EmptyDatasetException is raised when unknown label."""
  63. with self.assertRaises(ValueError):
  64. PascalVOCDetectionDataset(class_inclusion_list=["new_class"], **self.pascal_base_config)
  65. def test_sub_sampling_dataset(self):
  66. """Check that sub sampling works."""
  67. full_dataset = PascalVOCDetectionDataset(**self.pascal_base_config)
  68. with self.assertRaises(EmptyDatasetException):
  69. PascalVOCDetectionDataset(max_num_samples=0, **self.pascal_base_config)
  70. for max_num_samples in [1, 10, 1000, 1_000_000]:
  71. sampled_dataset = PascalVOCDetectionDataset(max_num_samples=max_num_samples, **self.pascal_base_config)
  72. self.assertEqual(len(sampled_dataset), min(max_num_samples, len(full_dataset)))
  73. if __name__ == '__main__':
  74. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...