1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
- import os
- import unittest
- from pathlib import Path
- import numpy as np
- import torch
- import torchvision as tv
- from super_gradients import Trainer
- from super_gradients.common.factories.list_factory import ListFactory
- from super_gradients.common.factories.processing_factory import ProcessingFactory
- from super_gradients.module_interfaces import HasPreprocessingParams
- from super_gradients.training import dataloaders
- from super_gradients.training import models
- from super_gradients.training.datasets import COCODetectionDataset
- from super_gradients.training.datasets.classification_datasets.torchvision_utils import get_torchvision_transforms_equivalent_processing
- from super_gradients.training.metrics import DetectionMetrics
- from super_gradients.training.models import YoloXPostPredictionCallback
- from super_gradients.training.processing import (
- ReverseImageChannels,
- DetectionLongestMaxSizeRescale,
- DetectionBottomRightPadding,
- ImagePermute,
- ComposeProcessing,
- )
- from super_gradients.training.transforms import DetectionPaddedRescale, DetectionRGB2BGR
- from super_gradients.training.utils.collate_fn import DetectionCollateFN, CrowdDetectionCollateFN
- class PreprocessingUnitTest(unittest.TestCase):
- def setUp(self) -> None:
- self.mini_coco_data_dir = str(Path(__file__).parent.parent / "data" / "tinycoco")
- def test_getting_preprocessing_params(self):
- expected_image_processor = {
- "ComposeProcessing": {
- "processings": [
- "ReverseImageChannels",
- {"DetectionLongestMaxSizeRescale": {"output_shape": (512, 512)}},
- {"DetectionLongestMaxSizeRescale": {"output_shape": (512, 512)}},
- {"DetectionBottomRightPadding": {"output_shape": (512, 512), "pad_value": 114}},
- {"ImagePermute": {"permutation": (2, 0, 1)}},
- ]
- }
- }
- train_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/train2017",
- "json_file": "instances_train2017.json",
- "cache": False,
- "input_dim": [512, 512],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- }
- dataset = COCODetectionDataset(**train_dataset_params)
- preprocessing_params = dataset.get_dataset_preprocessing_params()
- self.assertEqual(len(preprocessing_params["class_names"]), 80)
- self.assertEqual(preprocessing_params["image_processor"], expected_image_processor)
- self.assertEqual(preprocessing_params["iou"], 0.65)
- self.assertEqual(preprocessing_params["conf"], 0.5)
- def test_setting_preprocessing_params_from_validation_set(self):
- train_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/train2017",
- "json_file": "instances_train2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- "with_crowd": False,
- }
- val_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/val2017",
- "json_file": "instances_val2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- }
- trainset = COCODetectionDataset(**train_dataset_params)
- self.assertIsInstance(trainset, HasPreprocessingParams)
- train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN(), "num_workers": 0})
- valset = COCODetectionDataset(**val_dataset_params)
- self.assertIsInstance(valset, HasPreprocessingParams)
- valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN(), "num_workers": 0})
- trainer = Trainer("test_setting_preprocessing_params_from_validation_set")
- detection_train_params_yolox = {
- "max_epochs": 1,
- "lr_mode": "CosineLRScheduler",
- "cosine_final_lr_ratio": 0.05,
- "warmup_bias_lr": 0.0,
- "warmup_momentum": 0.9,
- "initial_lr": 0.02,
- "loss": "YoloXDetectionLoss",
- "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
- "train_metrics_list": [],
- "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True, num_cls=80)],
- "metric_to_watch": "mAP@0.50:0.95",
- "greater_metric_to_watch_is_better": True,
- "average_best_models": False,
- }
- model = models.get("yolox_s", num_classes=80)
- trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
- processing_list = model._image_processor.processings
- self.assertTrue(isinstance(processing_list[0], ReverseImageChannels))
- self.assertTrue(isinstance(processing_list[1], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[2], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[3], DetectionBottomRightPadding))
- self.assertTrue(isinstance(processing_list[4], ImagePermute))
- self.assertTrue(len(processing_list), 5)
- self.assertEqual(model._default_nms_iou, 0.65)
- self.assertEqual(model._default_nms_conf, 0.5)
- checkpoint_path = os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth")
- checkpoint = torch.load(checkpoint_path, map_location="cpu")
- self.assertTrue("processing_params" in checkpoint)
- def test_setting_preprocessing_params_from_checkpoint(self):
- model = models.get("yolox_s", num_classes=80)
- self.assertTrue(model._image_processor is None)
- self.assertTrue(model._default_nms_iou is None)
- self.assertTrue(model._default_nms_conf is None)
- self.assertTrue(model._class_names is None)
- train_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/train2017",
- "json_file": "instances_train2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- "with_crowd": False,
- }
- val_dataset_params = {
- "data_dir": self.mini_coco_data_dir,
- "subdir": "images/val2017",
- "json_file": "instances_val2017.json",
- "cache": False,
- "input_dim": [329, 320],
- "transforms": [
- {"DetectionPaddedRescale": {"input_dim": [512, 512]}},
- {"DetectionTargetsFormatTransform": {"input_dim": [512, 512], "output_format": "LABEL_CXCYWH"}},
- ],
- }
- trainset = COCODetectionDataset(**train_dataset_params)
- train_loader = dataloaders.get(dataset=trainset, dataloader_params={"collate_fn": DetectionCollateFN()})
- valset = COCODetectionDataset(**val_dataset_params)
- valid_loader = dataloaders.get(dataset=valset, dataloader_params={"collate_fn": CrowdDetectionCollateFN()})
- trainer = Trainer("save_ckpt_for")
- detection_train_params_yolox = {
- "max_epochs": 1,
- "lr_mode": "CosineLRScheduler",
- "cosine_final_lr_ratio": 0.05,
- "warmup_bias_lr": 0.0,
- "warmup_momentum": 0.9,
- "initial_lr": 0.02,
- "loss": "YoloXDetectionLoss",
- "criterion_params": {"strides": [8, 16, 32], "num_classes": 80}, # output strides of all yolo outputs
- "train_metrics_list": [],
- "valid_metrics_list": [DetectionMetrics(post_prediction_callback=YoloXPostPredictionCallback(), normalize_targets=True, num_cls=80)],
- "metric_to_watch": "mAP@0.50:0.95",
- "greater_metric_to_watch_is_better": True,
- "average_best_models": False,
- }
- trainer.train(model=model, training_params=detection_train_params_yolox, train_loader=train_loader, valid_loader=valid_loader)
- model = models.get("yolox_s", num_classes=80, checkpoint_path=os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth"))
- processing_list = model._image_processor.processings
- self.assertTrue(isinstance(processing_list[0], ReverseImageChannels))
- self.assertTrue(isinstance(processing_list[1], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[2], DetectionLongestMaxSizeRescale))
- self.assertTrue(isinstance(processing_list[3], DetectionBottomRightPadding))
- self.assertTrue(isinstance(processing_list[4], ImagePermute))
- self.assertTrue(len(processing_list), 5)
- self.assertEqual(model._default_nms_iou, 0.65)
- self.assertEqual(model._default_nms_conf, 0.5)
- checkpoint_path = os.path.join(trainer.checkpoints_dir_path, "ckpt_best.pth")
- checkpoint = torch.load(checkpoint_path, map_location="cpu")
- self.assertTrue("processing_params" in checkpoint)
- def test_processings_from_dataset_params(self):
- transforms = [DetectionRGB2BGR(prob=1), DetectionPaddedRescale(input_dim=(512, 512))]
- processings = []
- for t in transforms:
- processings += t.get_equivalent_preprocessing()
- instantiated_processing = ListFactory(ProcessingFactory()).get(processings)
- processing_pipeline = ComposeProcessing(instantiated_processing)
- result = processing_pipeline.preprocess_image(np.zeros((480, 640, 3)))
- print(result)
- def test_get_torchvision_transforms_equivalent_processing(self):
- from PIL import Image
- tv_transforms = tv.transforms.Compose(
- [
- tv.transforms.Resize(512),
- tv.transforms.ToTensor(),
- tv.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
- ]
- )
- input = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
- expected_output = tv_transforms(Image.fromarray(input)).numpy()
- processing = get_torchvision_transforms_equivalent_processing(tv_transforms)
- instantiated_processing = ListFactory(ProcessingFactory()).get(processing)
- processing_pipeline = ComposeProcessing(instantiated_processing)
- actual_output = processing_pipeline.preprocess_image(input)[0]
- self.assertEqual(actual_output.shape, expected_output.shape)
- np.testing.assert_allclose(actual_output, expected_output, atol=1e-5)
- if __name__ == "__main__":
- unittest.main()
|