Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

cifar_trainer_test.py 3.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  1. import unittest
  2. from super_gradients.training import models
  3. import super_gradients
  4. from super_gradients import Trainer
  5. from super_gradients.training.datasets.dataset_interfaces import LibraryDatasetInterface
  6. from super_gradients.training.dataloaders.dataloader_factory import (
  7. cifar10_train,
  8. cifar10_val,
  9. cifar100_train,
  10. cifar100_val,
  11. )
  12. class TestCifarTrainer(unittest.TestCase):
  13. def test_train_cifar10(self):
  14. super_gradients.init_trainer()
  15. trainer = Trainer("test", model_checkpoints_location="local")
  16. cifar_10_dataset_interface = LibraryDatasetInterface(name="cifar10")
  17. trainer.connect_dataset_interface(cifar_10_dataset_interface)
  18. model = models.get("resnet18_cifar", arch_params={"num_classes": 10})
  19. trainer.train(
  20. model=model,
  21. training_params={
  22. "max_epochs": 1,
  23. "initial_lr": 0.1,
  24. "loss": "cross_entropy",
  25. "train_metrics_list": ["Accuracy"],
  26. "valid_metrics_list": ["Accuracy"],
  27. "metric_to_watch": "Accuracy",
  28. },
  29. )
  30. def test_train_cifar10_dataloader(self):
  31. super_gradients.init_trainer()
  32. trainer = Trainer("test", model_checkpoints_location="local")
  33. cifar10_train_dl, cifar10_val_dl = cifar10_train(), cifar10_val()
  34. model = models.get("resnet18_cifar", arch_params={"num_classes": 10})
  35. trainer.train(
  36. model=model,
  37. training_params={
  38. "max_epochs": 1,
  39. "initial_lr": 0.1,
  40. "loss": "cross_entropy",
  41. "train_metrics_list": ["Accuracy"],
  42. "valid_metrics_list": ["Accuracy"],
  43. "metric_to_watch": "Accuracy",
  44. },
  45. train_loader=cifar10_train_dl,
  46. valid_loader=cifar10_val_dl,
  47. )
  48. def test_train_cifar100(self):
  49. super_gradients.init_trainer()
  50. trainer = Trainer("test", model_checkpoints_location="local")
  51. cifar_10_dataset_interface = LibraryDatasetInterface(name="cifar100")
  52. trainer.connect_dataset_interface(cifar_10_dataset_interface)
  53. model = models.get("resnet18_cifar", arch_params={"num_classes": 100})
  54. trainer.train(
  55. model=model,
  56. training_params={
  57. "max_epochs": 1,
  58. "initial_lr": 0.1,
  59. "loss": "cross_entropy",
  60. "train_metrics_list": ["Accuracy"],
  61. "valid_metrics_list": ["Accuracy"],
  62. "metric_to_watch": "Accuracy",
  63. },
  64. )
  65. def test_train_cifar100_dataloader(self):
  66. super_gradients.init_trainer()
  67. trainer = Trainer("test", model_checkpoints_location="local")
  68. cifar100_train_dl, cifar100_val_dl = cifar100_train(), cifar100_val()
  69. model = models.get("resnet18_cifar", arch_params={"num_classes": 100})
  70. trainer.train(
  71. model=model,
  72. training_params={
  73. "max_epochs": 1,
  74. "initial_lr": 0.1,
  75. "loss": "cross_entropy",
  76. "train_metrics_list": ["Accuracy"],
  77. "valid_metrics_list": ["Accuracy"],
  78. "metric_to_watch": "Accuracy",
  79. },
  80. train_loader=cifar100_train_dl,
  81. valid_loader=cifar100_val_dl,
  82. )
  83. if __name__ == "__main__":
  84. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...