1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
- import unittest
- from super_gradients import SgModel, \
- ClassificationTestDatasetInterface
- from super_gradients.training.metrics import Accuracy, Top5, ToyTestClassificationMetric
- from super_gradients.training.models import ResNet18
- from torch.optim import SGD
- from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR
- from super_gradients.training.utils.callbacks import LRSchedulerCallback, Phase
- from torchmetrics import F1Score
- import torch
- import numpy as np
- from super_gradients.training.datasets.dataset_interfaces import DatasetInterface
- class TrainWithInitializedObjectsTest(unittest.TestCase):
- """
- Unit test for training with initialized objects passed as parameters.
- """
- def test_train_with_external_criterion(self):
- model = SgModel("external_criterion_test", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": torch.nn.CrossEntropyLoss(), "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- def test_train_with_external_optimizer(self):
- model = SgModel("external_optimizer_test", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- optimizer = SGD(params=net.parameters(), lr=0.1)
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": optimizer,
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- def test_train_with_external_scheduler(self):
- model = SgModel("external_scheduler_test", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- lr = 0.3
- net = ResNet18(num_classes=5, arch_params={})
- optimizer = SGD(params=net.parameters(), lr=lr)
- lr_scheduler = MultiStepLR(optimizer=optimizer, milestones=[1, 2], gamma=0.1)
- phase_callbacks = [LRSchedulerCallback(lr_scheduler, Phase.TRAIN_EPOCH_END)]
- model.build_model(net)
- train_params = {"max_epochs": 2, "phase_callbacks": phase_callbacks,
- "lr_warmup_epochs": 0, "initial_lr": lr, "loss": "cross_entropy", "optimizer": optimizer,
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- assert lr_scheduler.get_last_lr()[0] == lr * 0.1 * 0.1
- def test_train_with_external_scheduler_class(self):
- model = SgModel("external_scheduler_test", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- optimizer = SGD # a class - not an instance
- model.build_model(net)
- train_params = {"max_epochs": 2,
- "lr_warmup_epochs": 0, "initial_lr": 0.3, "loss": "cross_entropy", "optimizer": optimizer,
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- def test_train_with_reduce_on_plateau(self):
- model = SgModel("external_reduce_on_plateau_scheduler_test", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- lr = 0.3
- net = ResNet18(num_classes=5, arch_params={})
- optimizer = SGD(params=net.parameters(), lr=lr)
- lr_scheduler = ReduceLROnPlateau(optimizer=optimizer, patience=0)
- phase_callbacks = [LRSchedulerCallback(lr_scheduler, Phase.VALIDATION_EPOCH_END, "ToyTestClassificationMetric")]
- model.build_model(net)
- train_params = {"max_epochs": 2, "phase_callbacks": phase_callbacks,
- "lr_warmup_epochs": 0, "initial_lr": lr, "loss": "cross_entropy", "optimizer": optimizer,
- "criterion_params": {},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5(), ToyTestClassificationMetric()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- assert lr_scheduler._last_lr[0] == lr * 0.1
- def test_train_with_external_metric(self):
- model = SgModel("external_metric_test", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [F1Score()], "valid_metrics_list": [F1Score()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "F1Score",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- def test_train_with_external_dataloaders(self):
- model = SgModel("external_data_loader_test", model_checkpoints_location='local')
- batch_size = 5
- trainset = torch.utils.data.TensorDataset(torch.Tensor(np.random.random((10, 3, 32, 32))), torch.LongTensor(np.zeros((10))))
- valset = torch.utils.data.TensorDataset(torch.Tensor(np.random.random((10, 3, 32, 32))), torch.LongTensor(np.zeros((10))))
- classes = [0, 1, 2, 3, 4]
- train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size)
- val_loader = torch.utils.data.DataLoader(valset, batch_size=batch_size)
- dataset_interface = DatasetInterface(train_loader=train_loader, val_loader=val_loader, classes=classes)
- model.connect_dataset_interface(dataset_interface)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [F1Score()], "valid_metrics_list": [F1Score()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "F1Score",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- if __name__ == '__main__':
- unittest.main()
|