1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
- import shutil
- import unittest
- import os
- from super_gradients import SgModel, \
- ClassificationTestDatasetInterface, \
- SegmentationTestDatasetInterface, DetectionTestDatasetInterface
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training import MultiGPUMode
- from super_gradients.training.models.detection_models.yolo_base import YoloPostPredictionCallback
- from super_gradients.training.utils.detection_utils import base_detection_collate_fn, DetectionCollateFN
- from super_gradients.training.datasets.datasets_utils import ComposedCollateFunction, MultiScaleCollateFunction
- from super_gradients.training.utils.detection_utils import YoloV3NonMaxSuppression
- from super_gradients.training.metrics.detection_metrics import DetectionMetrics
- from super_gradients.training.metrics.segmentation_metrics import PixelAccuracy, IoU
- class TestWithoutTrainTest(unittest.TestCase):
- @classmethod
- def setUp(cls):
- # NAMES FOR THE EXPERIMENTS TO LATER DELETE
- cls.folder_names = ['test_classification_model', 'test_detection_model', 'test_segmentation_model']
- @classmethod
- def tearDownClass(cls) -> None:
- # ERASE ALL THE FOLDERS THAT WERE CREATED DURING THIS TEST
- for folder in cls.folder_names:
- if os.path.isdir(os.path.join('checkpoints', folder)):
- shutil.rmtree(os.path.join('checkpoints', folder))
- @staticmethod
- def get_classification_trainer(name=''):
- model = SgModel(name, model_checkpoints_location='local')
- dataset_params = {"batch_size": 4}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- model.build_model("resnet18_cifar")
- return model
- @staticmethod
- def get_detection_trainer(name=''):
- dataset_params = {"batch_size": 4,
- "test_batch_size": 4,
- "dataset_dir": "/data/coco/",
- "s3_link": None,
- "image_size": 320,
- "test_collate_fn": DetectionCollateFN(),
- "train_collate_fn": DetectionCollateFN(),
- }
- model = SgModel(name, model_checkpoints_location='local',
- multi_gpu=MultiGPUMode.OFF,
- post_prediction_callback=YoloPostPredictionCallback())
- dataset_interface = DetectionTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset_interface, data_loader_num_workers=4)
- model.build_model('yolox_s')
- return model
- @staticmethod
- def get_segmentation_trainer(name=''):
- shelfnet_lw_arch_params = {"num_classes": 5, "load_checkpoint": False}
- model = SgModel(name, model_checkpoints_location='local', multi_gpu=False)
- dataset_interface = SegmentationTestDatasetInterface()
- model.connect_dataset_interface(dataset_interface, data_loader_num_workers=8)
- model.build_model('shelfnet34_lw', arch_params=shelfnet_lw_arch_params)
- return model
- def test_test_without_train(self):
- model = self.get_classification_trainer(self.folder_names[0])
- assert isinstance(model.test(silent_mode=True, test_metrics_list=[Accuracy(), Top5()]), tuple)
- model = self.get_detection_trainer(self.folder_names[1])
- test_metrics = [DetectionMetrics(post_prediction_callback=model.post_prediction_callback, num_cls=5)]
- assert isinstance(model.test(silent_mode=True, test_metrics_list=test_metrics), tuple)
- model = self.get_segmentation_trainer(self.folder_names[2])
- assert isinstance(model.test(silent_mode=True, test_metrics_list=[IoU(21), PixelAccuracy()]), tuple)
- def test_test_on_valid_loader_without_train(self):
- model = self.get_classification_trainer(self.folder_names[0])
- assert isinstance(model.test(test_loader=model.valid_loader, silent_mode=True, test_metrics_list=[Accuracy(), Top5()]), tuple)
- model = self.get_detection_trainer(self.folder_names[1])
- test_metrics = [DetectionMetrics(post_prediction_callback=model.post_prediction_callback, num_cls=5)]
- assert isinstance(model.test(test_loader=model.valid_loader, silent_mode=True, test_metrics_list=test_metrics), tuple)
- model = self.get_segmentation_trainer(self.folder_names[2])
- assert isinstance(model.test(test_loader=model.valid_loader, silent_mode=True, test_metrics_list=[IoU(21), PixelAccuracy()]), tuple)
- if __name__ == '__main__':
- unittest.main()
|