1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.metrics.segmentation_metrics — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.metrics.segmentation_metrics</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.metrics.segmentation_metrics</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">import</span> <span class="nn">torchmetrics</span>
- <span class="kn">from</span> <span class="nn">torchmetrics</span> <span class="kn">import</span> <span class="n">Metric</span>
- <div class="viewcode-block" id="batch_pix_accuracy"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.batch_pix_accuracy">[docs]</a><span class="k">def</span> <span class="nf">batch_pix_accuracy</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
- <span class="sd">"""Batch Pixel Accuracy</span>
- <span class="sd"> Args:</span>
- <span class="sd"> predict: input 4D tensor</span>
- <span class="sd"> target: label 3D tensor</span>
- <span class="sd"> """</span>
- <span class="n">_</span><span class="p">,</span> <span class="n">predict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">predict</span> <span class="o">=</span> <span class="n">predict</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="n">pixel_labeled</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">target</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span>
- <span class="n">pixel_correct</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">predict</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">target</span> <span class="o">></span> <span class="mi">0</span><span class="p">))</span>
- <span class="k">assert</span> <span class="n">pixel_correct</span> <span class="o"><=</span> <span class="n">pixel_labeled</span><span class="p">,</span> \
- <span class="s2">"Correct area should be smaller than Labeled"</span>
- <span class="k">return</span> <span class="n">pixel_correct</span><span class="p">,</span> <span class="n">pixel_labeled</span></div>
- <div class="viewcode-block" id="batch_intersection_union"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.batch_intersection_union">[docs]</a><span class="k">def</span> <span class="nf">batch_intersection_union</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">nclass</span><span class="p">):</span>
- <span class="sd">"""Batch Intersection of Union</span>
- <span class="sd"> Args:</span>
- <span class="sd"> predict: input 4D tensor</span>
- <span class="sd"> target: label 3D tensor</span>
- <span class="sd"> nclass: number of categories (int)</span>
- <span class="sd"> """</span>
- <span class="n">_</span><span class="p">,</span> <span class="n">predict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">mini</span> <span class="o">=</span> <span class="mi">1</span>
- <span class="n">maxi</span> <span class="o">=</span> <span class="n">nclass</span>
- <span class="n">nbins</span> <span class="o">=</span> <span class="n">nclass</span>
- <span class="n">predict</span> <span class="o">=</span> <span class="n">predict</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="n">predict</span> <span class="o">=</span> <span class="n">predict</span> <span class="o">*</span> <span class="p">(</span><span class="n">target</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">predict</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
- <span class="n">intersection</span> <span class="o">=</span> <span class="n">predict</span> <span class="o">*</span> <span class="p">(</span><span class="n">predict</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span>
- <span class="c1"># areas of intersection and union</span>
- <span class="n">area_inter</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">intersection</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">nbins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="n">mini</span><span class="p">,</span> <span class="n">maxi</span><span class="p">))</span>
- <span class="n">area_pred</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">nbins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="n">mini</span><span class="p">,</span> <span class="n">maxi</span><span class="p">))</span>
- <span class="n">area_lab</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">nbins</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="n">mini</span><span class="p">,</span> <span class="n">maxi</span><span class="p">))</span>
- <span class="n">area_union</span> <span class="o">=</span> <span class="n">area_pred</span> <span class="o">+</span> <span class="n">area_lab</span> <span class="o">-</span> <span class="n">area_inter</span>
- <span class="k">assert</span> <span class="p">(</span><span class="n">area_inter</span> <span class="o"><=</span> <span class="n">area_union</span><span class="p">)</span><span class="o">.</span><span class="n">all</span><span class="p">(),</span> \
- <span class="s2">"Intersection area should be smaller than Union area"</span>
- <span class="k">return</span> <span class="n">area_inter</span><span class="p">,</span> <span class="n">area_union</span></div>
- <span class="c1"># ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py</span>
- <div class="viewcode-block" id="pixel_accuracy"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.pixel_accuracy">[docs]</a><span class="k">def</span> <span class="nf">pixel_accuracy</span><span class="p">(</span><span class="n">im_pred</span><span class="p">,</span> <span class="n">im_lab</span><span class="p">):</span>
- <span class="n">im_pred</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_pred</span><span class="p">)</span>
- <span class="n">im_lab</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_lab</span><span class="p">)</span>
- <span class="c1"># Remove classes from unlabeled pixels in gt image.</span>
- <span class="c1"># We should not penalize detections in unlabeled portions of the image.</span>
- <span class="n">pixel_labeled</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">im_lab</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span>
- <span class="n">pixel_correct</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">im_pred</span> <span class="o">==</span> <span class="n">im_lab</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">im_lab</span> <span class="o">></span> <span class="mi">0</span><span class="p">))</span>
- <span class="c1"># pixel_accuracy = 1.0 * pixel_correct / pixel_labeled</span>
- <span class="k">return</span> <span class="n">pixel_correct</span><span class="p">,</span> <span class="n">pixel_labeled</span></div>
- <div class="viewcode-block" id="intersection_and_union"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.intersection_and_union">[docs]</a><span class="k">def</span> <span class="nf">intersection_and_union</span><span class="p">(</span><span class="n">im_pred</span><span class="p">,</span> <span class="n">im_lab</span><span class="p">,</span> <span class="n">num_class</span><span class="p">):</span>
- <span class="n">im_pred</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_pred</span><span class="p">)</span>
- <span class="n">im_lab</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">im_lab</span><span class="p">)</span>
- <span class="c1"># Remove classes from unlabeled pixels in gt image.</span>
- <span class="n">im_pred</span> <span class="o">=</span> <span class="n">im_pred</span> <span class="o">*</span> <span class="p">(</span><span class="n">im_lab</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span>
- <span class="c1"># Compute area intersection:</span>
- <span class="n">intersection</span> <span class="o">=</span> <span class="n">im_pred</span> <span class="o">*</span> <span class="p">(</span><span class="n">im_pred</span> <span class="o">==</span> <span class="n">im_lab</span><span class="p">)</span>
- <span class="n">area_inter</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">intersection</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span>
- <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
- <span class="c1"># Compute area union:</span>
- <span class="n">area_pred</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">im_pred</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span>
- <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
- <span class="n">area_lab</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">im_lab</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span>
- <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_class</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
- <span class="n">area_union</span> <span class="o">=</span> <span class="n">area_pred</span> <span class="o">+</span> <span class="n">area_lab</span> <span class="o">-</span> <span class="n">area_inter</span>
- <span class="k">return</span> <span class="n">area_inter</span><span class="p">,</span> <span class="n">area_union</span></div>
- <div class="viewcode-block" id="PixelAccuracy"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy">[docs]</a><span class="k">class</span> <span class="nc">PixelAccuracy</span><span class="p">(</span><span class="n">Metric</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ignore_label</span><span class="o">=-</span><span class="mi">100</span><span class="p">,</span> <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">ignore_label</span> <span class="o">=</span> <span class="n">ignore_label</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">add_state</span><span class="p">(</span><span class="s2">"total_correct"</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mf">0.</span><span class="p">),</span> <span class="n">dist_reduce_fx</span><span class="o">=</span><span class="s2">"sum"</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">add_state</span><span class="p">(</span><span class="s2">"total_label"</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mf">0.</span><span class="p">),</span> <span class="n">dist_reduce_fx</span><span class="o">=</span><span class="s2">"sum"</span><span class="p">)</span>
- <div class="viewcode-block" id="PixelAccuracy.update"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.update">[docs]</a> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">):</span>
- <span class="n">preds</span> <span class="o">=</span> <span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
- <span class="n">_</span><span class="p">,</span> <span class="n">predict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">labeled_mask</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">ne</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">ignore_label</span><span class="p">)</span>
- <span class="n">pixel_labeled</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">labeled_mask</span><span class="p">)</span>
- <span class="n">pixel_correct</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">predict</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span> <span class="o">*</span> <span class="n">labeled_mask</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">total_correct</span> <span class="o">+=</span> <span class="n">pixel_correct</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">total_label</span> <span class="o">+=</span> <span class="n">pixel_labeled</span></div>
- <div class="viewcode-block" id="PixelAccuracy.compute"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.compute">[docs]</a> <span class="k">def</span> <span class="nf">compute</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="n">_total_correct</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">total_correct</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">'int64'</span><span class="p">)</span>
- <span class="n">_total_label</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">total_label</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">'int64'</span><span class="p">)</span>
- <span class="n">pix_acc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span> <span class="o">*</span> <span class="n">_total_correct</span> <span class="o">/</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">spacing</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span> <span class="o">+</span> <span class="n">_total_label</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">pix_acc</span></div></div>
- <div class="viewcode-block" id="IoU"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.IoU">[docs]</a><span class="k">class</span> <span class="nc">IoU</span><span class="p">(</span><span class="n">torchmetrics</span><span class="o">.</span><span class="n">IoU</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">)</span>
- <div class="viewcode-block" id="IoU.update"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.segmentation_metrics.IoU.update">[docs]</a> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
- <span class="c1"># WHEN DEALING WITH MULTIPLE OUTPUTS- OUTPUTS[0] IS THE MAIN SEGMENTATION MAP</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">):</span>
- <span class="n">preds</span> <span class="o">=</span> <span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
- <span class="n">_</span><span class="p">,</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">preds</span><span class="o">=</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">)</span></div></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|