Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

phase_context_test.py 4.6 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
  1. import unittest
  2. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  3. from super_gradients.training.utils.callbacks import PhaseContextTestCallback, Phase
  4. from super_gradients import Trainer
  5. from super_gradients.training.metrics import Accuracy, Top5
  6. from super_gradients.training.models import ResNet18
  7. import torch
  8. from super_gradients.training.utils.utils import AverageMeter
  9. from torchmetrics import MetricCollection
  10. class PhaseContextTest(unittest.TestCase):
  11. def context_information_in_train_test(self):
  12. trainer = Trainer("context_information_in_train_test")
  13. net = ResNet18(num_classes=5, arch_params={})
  14. phase_callbacks = [
  15. PhaseContextTestCallback(Phase.TRAIN_BATCH_END),
  16. PhaseContextTestCallback(Phase.TRAIN_BATCH_STEP),
  17. PhaseContextTestCallback(Phase.TRAIN_EPOCH_END),
  18. PhaseContextTestCallback(Phase.VALIDATION_BATCH_END),
  19. PhaseContextTestCallback(Phase.VALIDATION_EPOCH_END),
  20. ]
  21. train_params = {
  22. "max_epochs": 2,
  23. "lr_updates": [1],
  24. "lr_decay_factor": 0.1,
  25. "lr_mode": "step",
  26. "lr_warmup_epochs": 0,
  27. "initial_lr": 0.1,
  28. "loss": "cross_entropy",
  29. "optimizer": "SGD",
  30. "criterion_params": {},
  31. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  32. "train_metrics_list": [Accuracy()],
  33. "valid_metrics_list": [Top5()],
  34. "metric_to_watch": "Top5",
  35. "greater_metric_to_watch_is_better": True,
  36. "phase_callbacks": phase_callbacks,
  37. }
  38. trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
  39. context_callbacks = list(filter(lambda cb: isinstance(cb, PhaseContextTestCallback), trainer.phase_callbacks))
  40. # CHECK THAT PHASE CONTEXES HAVE THE EXACT INFORMATION THERY'RE SUPPOSE TO HOLD
  41. for phase_callback in context_callbacks:
  42. if phase_callback.phase in [Phase.TRAIN_BATCH_END, Phase.TRAIN_BATCH_STEP, Phase.VALIDATION_BATCH_END]:
  43. self.assertTrue(phase_callback.context.batch_idx == 0)
  44. self.assertTrue(phase_callback.context.criterion is not None)
  45. self.assertTrue(isinstance(phase_callback.context.inputs, torch.Tensor))
  46. self.assertTrue(isinstance(phase_callback.context.loss_avg_meter, AverageMeter))
  47. self.assertTrue(isinstance(phase_callback.context.loss_log_items, torch.Tensor))
  48. self.assertTrue(phase_callback.context.metrics_dict is None)
  49. self.assertTrue(isinstance(phase_callback.context.preds, torch.Tensor))
  50. self.assertTrue(isinstance(phase_callback.context.target, torch.Tensor))
  51. if phase_callback.phase == Phase.VALIDATION_BATCH_END:
  52. self.assertTrue(phase_callback.context.epoch == 2)
  53. self.assertTrue(
  54. isinstance(phase_callback.context.metrics_compute_fn, MetricCollection) and hasattr(phase_callback.context.metrics_compute_fn, "Top5")
  55. )
  56. else:
  57. self.assertTrue(phase_callback.context.epoch == 1)
  58. self.assertTrue(
  59. isinstance(phase_callback.context.metrics_compute_fn, MetricCollection)
  60. and hasattr(phase_callback.context.metrics_compute_fn, "Accuracy")
  61. )
  62. if phase_callback.phase in [Phase.TRAIN_EPOCH_END, Phase.VALIDATION_EPOCH_END]:
  63. self.assertTrue(phase_callback.context.batch_idx is None)
  64. self.assertTrue(phase_callback.context.criterion is None)
  65. self.assertTrue(phase_callback.context.inputs is None)
  66. self.assertTrue(phase_callback.context.loss_log_items is None)
  67. self.assertTrue(phase_callback.context.metrics_compute_fn is None)
  68. self.assertTrue(phase_callback.context.optimizer is not None)
  69. self.assertTrue(phase_callback.context.preds is None)
  70. self.assertTrue(phase_callback.context.target is None)
  71. self.assertTrue(phase_callback.context.epoch == 1)
  72. # EPOCH END PHASES USE THE SAME CONTEXT, WHICH IS UPDATED- SO VALID METRICS DICT SHOULD BE PRESENT
  73. self.assertTrue(isinstance(phase_callback.context.metrics_dict, dict))
  74. self.assertTrue("Loss" in phase_callback.context.metrics_dict.keys())
  75. self.assertTrue("Top5" in phase_callback.context.metrics_dict.keys())
  76. if __name__ == "__main__":
  77. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...