1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
- import tempfile
- import os
- import unittest
- from typing import Dict, Union, Any
- import numpy as np
- import pkg_resources
- from hydra import initialize_config_dir, compose
- from hydra.core.global_hydra import GlobalHydra
- from pydantic.main import deepcopy
- import super_gradients
- from super_gradients.training.dataloaders.dataloaders import _process_dataset_params
- from super_gradients.training.datasets import PascalVOCDetectionDataset, COCODetectionDataset
- from super_gradients.training.transforms import DetectionMosaic, DetectionPaddedRescale, DetectionTargetsFormatTransform
- from super_gradients.training.datasets.data_formats.default_formats import XYXY_LABEL
- from super_gradients.training.exceptions.dataset_exceptions import EmptyDatasetException
- from super_gradients.common.environment.path_utils import normalize_path
- class COCODetectionDataset6Channels(COCODetectionDataset):
- def get_sample(self, index: int) -> Dict[str, Union[np.ndarray, Any]]:
- img = self.get_resized_image(index)
- img = np.concatenate((img, img), 2)
- annotation = deepcopy(self.annotations[index])
- return {"image": img, **annotation}
- class DatasetIntegrationTest(unittest.TestCase):
- def setUp(self) -> None:
- super_gradients.init_trainer()
- self.batch_size = 64
- self.max_samples_per_plot = 16
- self.n_plot = 1
- transforms = [
- DetectionMosaic(input_dim=(640, 640), prob=0.8),
- DetectionPaddedRescale(input_dim=(640, 640), max_targets=120),
- DetectionTargetsFormatTransform(input_dim=(640, 640), output_format=XYXY_LABEL),
- ]
- self.test_dir = tempfile.TemporaryDirectory().name
- PascalVOCDetectionDataset.download(self.test_dir)
- self.pascal_class_inclusion_lists = [["aeroplane", "bicycle"], ["bird", "boat", "bottle", "bus"], ["pottedplant"], ["person"]]
- self.pascal_base_config = dict(data_dir=self.test_dir, images_sub_directory="images/train2012/", input_dim=(640, 640), transforms=transforms)
- self.coco_class_inclusion_lists = [["airplane", "bicycle"], ["bird", "boat", "bottle", "bus"], ["potted plant"], ["person"]]
- self.dataset_coco_base_config = dict(
- data_dir="/data/coco",
- subdir="images/val2017",
- json_file="instances_val2017.json",
- input_dim=(640, 640),
- transforms=transforms,
- )
- def test_multiple_pascal_dataset_subclass_before_transforms(self):
- """Run test_pascal_dataset_subclass on multiple inclusion lists"""
- for class_inclusion_list in self.pascal_class_inclusion_lists:
- dataset = PascalVOCDetectionDataset(
- class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.pascal_base_config
- )
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
- def test_multiple_pascal_dataset_subclass_after_transforms(self):
- """Run test_pascal_dataset_subclass on multiple inclusion lists"""
- for class_inclusion_list in self.pascal_class_inclusion_lists:
- dataset = PascalVOCDetectionDataset(
- class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.pascal_base_config
- )
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
- def test_multiple_coco_dataset_subclass_before_transforms(self):
- """Check subclass on multiple inclusions before transform"""
- for class_inclusion_list in self.coco_class_inclusion_lists:
- dataset = COCODetectionDataset(
- class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.dataset_coco_base_config
- )
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
- def test_multiple_coco_dataset_subclass_after_transforms(self):
- """Check subclass on multiple inclusions after transform"""
- for class_inclusion_list in self.coco_class_inclusion_lists:
- dataset = COCODetectionDataset(
- class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.dataset_coco_base_config
- )
- dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
- def test_subclass_non_existing_class(self):
- """Check that EmptyDatasetException is raised when unknown label."""
- with self.assertRaises(ValueError):
- PascalVOCDetectionDataset(class_inclusion_list=["new_class"], **self.pascal_base_config)
- def test_sub_sampling_dataset(self):
- """Check that sub sampling works."""
- full_dataset = PascalVOCDetectionDataset(**self.pascal_base_config)
- with self.assertRaises(EmptyDatasetException):
- PascalVOCDetectionDataset(max_num_samples=0, **self.pascal_base_config)
- for max_num_samples in [1, 10, 1000, 1_000_000]:
- sampled_dataset = PascalVOCDetectionDataset(max_num_samples=max_num_samples, **self.pascal_base_config)
- self.assertEqual(len(sampled_dataset), min(max_num_samples, len(full_dataset)))
- def test_detection_dataset_transforms_with_unique_channel_count(self):
- GlobalHydra.instance().clear()
- sg_recipes_dir = pkg_resources.resource_filename("super_gradients.recipes", "")
- dataset_config = os.path.join("dataset_params", "coco_detection_dataset_params")
- with initialize_config_dir(config_dir=normalize_path(sg_recipes_dir), version_base="1.2"):
- # config is relative to a module
- cfg = compose(config_name=normalize_path(dataset_config))
- dataset_params = _process_dataset_params(cfg, dict(), True)
- coco_base_recipe_transforms = dataset_params["transforms"]
- dataset_config = deepcopy(self.dataset_coco_base_config)
- dataset_config["transforms"] = coco_base_recipe_transforms
- dataset = COCODetectionDataset6Channels(**dataset_config)
- self.assertEqual(dataset.__getitem__(0)[0].shape[0], 6)
- if __name__ == "__main__":
- unittest.main()
|