1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
- import unittest
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
- from super_gradients.training.models import LeNet
- class LastBatchIdxCollector(PhaseCallback):
- def __init__(self, train: bool = True):
- phase = Phase.TRAIN_BATCH_END if train else Phase.VALIDATION_BATCH_END
- super().__init__(phase=phase)
- self.last_batch_idx = 0
- def __call__(self, context: PhaseContext):
- self.last_batch_idx = context.batch_idx
- class MaxBatchesLoopBreakTest(unittest.TestCase):
- def test_max_train_batches_loop_break(self):
- last_batch_collector = LastBatchIdxCollector()
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "CrossEntropyLoss",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": [last_batch_collector],
- "max_train_batches": 3,
- }
- # Define Model
- net = LeNet()
- trainer = Trainer("test_max_batches_break_train")
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=classification_test_dataloader(dataset_size=16, batch_size=4),
- valid_loader=classification_test_dataloader(),
- )
- # ASSERT LAST BATCH IDX IS 2
- print(last_batch_collector.last_batch_idx)
- self.assertTrue(last_batch_collector.last_batch_idx == 2)
- def test_max_valid_batches_loop_break(self):
- last_batch_collector = LastBatchIdxCollector(train=False)
- train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "StepLRScheduler",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "CrossEntropyLoss",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": [last_batch_collector],
- "max_valid_batches": 3,
- }
- # Define Model
- net = LeNet()
- trainer = Trainer("test_max_batches_break_val")
- trainer.train(
- model=net,
- training_params=train_params,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader(dataset_size=16, batch_size=4),
- )
- # ASSERT LAST BATCH IDX IS 2
- self.assertTrue(last_batch_collector.last_batch_idx == 2)
- if __name__ == "__main__":
- unittest.main()
|